Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology, 50 Unist-gil, Eonyang-eup, Ulju-gun, 44919, Ulsan, Republic of Korea.
Microsoft Technology Centers, Microsoft Korea, 50, Jongno 1-gil, Jongno-gu, 03142, Seoul, Republic of Korea.
Health Care Manag Sci. 2024 Sep;27(3):370-390. doi: 10.1007/s10729-024-09676-5. Epub 2024 Jun 1.
Long waiting time in outpatient departments is a crucial factor in patient dissatisfaction. We aim to analytically interpret the waiting times predicted by machine learning models and provide patients with an explanation of the expected waiting time. Here, underestimating waiting times can cause patient dissatisfaction, so preventing this in predictive models is necessary. To address this issue, we propose a framework considering dissatisfaction for estimating the waiting time in an outpatient department. In our framework, we leverage asymmetric loss functions to ensure robustness against underestimation. We also propose a dissatisfaction-aware asymmetric error score (DAES) to determine an appropriate model by considering the trade-off between underestimation and accuracy. Finally, Shapley additive explanation (SHAP) is applied to interpret the relationship trained by the model, enabling decision makers to use this information for improving outpatient service operations. We apply our framework in the endocrinology metabolism department and neurosurgery department in one of the largest hospitals in South Korea. The use of asymmetric functions prevents underestimation in the model, and with the proposed DAES, we can strike a balance in selecting the best model. By using SHAP, we can analytically interpret the waiting time in outpatient service (e.g., the length of the queue affects the waiting time the most) and provide explanations about the expected waiting time to patients. The proposed framework aids in improving operations, considering practical application in hospitals for real-time patient notification and minimizing patient dissatisfaction. Given the significance of managing hospital operations from the perspective of patients, this work is expected to contribute to operations improvement in health service practices.
门诊部门的候诊时间长是导致患者不满的关键因素。我们旨在对机器学习模型预测的候诊时间进行分析解释,为患者提供预计候诊时间的说明。在这里,低估候诊时间可能会导致患者不满,因此在预测模型中防止这种情况发生是必要的。为了解决这个问题,我们提出了一个考虑不满因素的框架来估计门诊部门的候诊时间。在我们的框架中,我们利用不对称损失函数来确保对低估的稳健性。我们还提出了一个不满感知不对称误差评分(DAES),通过考虑低估和准确性之间的权衡,确定合适的模型。最后,应用 Shapley 加法解释(SHAP)来解释模型训练的关系,使决策者能够利用这些信息来改进门诊服务运营。我们在韩国最大的医院之一的内分泌代谢科和神经外科应用了我们的框架。使用不对称函数可以防止模型中的低估,而使用所提出的 DAES,我们可以在选择最佳模型时取得平衡。通过使用 SHAP,我们可以对门诊服务的候诊时间进行分析解释(例如,队列的长度对候诊时间的影响最大),并向患者解释预计的候诊时间。所提出的框架有助于改进运营,考虑到在医院中实时向患者通知和最小化患者不满的实际应用。鉴于从患者角度管理医院运营的重要性,这项工作有望为改善卫生服务实践中的运营做出贡献。