Mehr Nima Ghavidel, Li Xian, Chen Gaoping, Favis Basil D, Hoemann Caroline D
Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, H3C 3A7, Canada.
Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), École Polytechnique, Montreal, Quebec, H3C 3A7, Canada.
J Biomed Mater Res A. 2015 Jul;103(7):2449-59. doi: 10.1002/jbm.a.35381. Epub 2014 Dec 29.
Poly(epsilon-caprolactone) (PCL) is a hydrophobic bioplastic under development for bone tissue engineering applications. Limited information is available on the role of internal geometry and cell-surface attachment on osseous integration potential. We tested the hypothesis that human bone marrow mesenchymal stem cells (MSCs) deposit more mineral inside porous 3D PCL scaffolds with fully interconnected 84 or 141 µm pores, when the surfaces are coated with chitosan via Layer-by-Layer (LbL)-deposited polyelectrolytes. Freshly trypsinized MSCs were seeded on PCL 3D cylinders using a novel static cold seeding method in 2% serum to optimally populate all depths of the scaffold discs, followed by 10 days of culture in proliferation medium and 21 additional days in osteogenic medium. MSCs were observed by SEM and histology to spread faster and to proliferate more on chitosan-coated pore surfaces. Most pores, with or without chitosan, became filled by collagen networks sparsely populated with fibroblast-like cells. After 21 days of culture in osteogenic medium, sporadic matrix mineralization was detected histologically and by micro-CT in highly cellular surface layers that enveloped all scaffolds and in cell aggregates in 141 µm pores near the edges. LbL-chitosan promoted punctate mineral deposition on the surfaces of 84 µm pores (p < 0.05 vs. PCL-only) but not the 141 µm pores. This study revealed that LbL-chitosan coatings are sufficient to promote MSC attachment to PCL but only enhance mineral formation in 84 µm pores, suggesting a potential inhibitory role for MSC-derived fibroblasts in osteoblast terminal differentiation.
聚(ε-己内酯)(PCL)是一种正在开发用于骨组织工程应用的疏水性生物塑料。关于内部几何结构和细胞表面附着对骨整合潜力的作用,目前可用信息有限。我们测试了这样一个假设:当通过层层(LbL)沉积的聚电解质将壳聚糖涂覆在表面时,人骨髓间充质干细胞(MSCs)会在具有完全互连的84或141 µm孔的多孔3D PCL支架内沉积更多矿物质。使用一种新颖的静态冷接种方法,将刚用胰蛋白酶消化的MSCs接种在PCL 3D圆柱体上,置于2%血清中,以最佳方式填充支架圆盘的所有深度,随后在增殖培养基中培养10天,再在成骨培养基中培养21天。通过扫描电子显微镜(SEM)和组织学观察发现,MSCs在壳聚糖涂覆的孔表面上扩散更快且增殖更多。大多数孔,无论有无壳聚糖,都被稀疏分布有成纤维细胞样细胞的胶原网络填充。在成骨培养基中培养21天后,通过组织学和微计算机断层扫描(micro-CT)在包裹所有支架的高度细胞化表面层以及边缘附近141 µm孔中的细胞聚集体中检测到散在的基质矿化。LbL壳聚糖促进了84 µm孔表面的点状矿物质沉积(与仅PCL相比,p < 0.05),但对141 µm孔没有促进作用。这项研究表明,LbL壳聚糖涂层足以促进MSCs附着于PCL,但仅增强84 µm孔中的矿物质形成,这表明MSCs来源的成纤维细胞在成骨细胞终末分化中可能具有抑制作用。