Traunmüller Lisa, Bornmann Caroline, Scheiffele Peter
Biozentrum, University of Basel, 4056 Basel, Switzerland.
Biozentrum, University of Basel, 4056 Basel, Switzerland
J Neurosci. 2014 Dec 10;34(50):16755-61. doi: 10.1523/JNEUROSCI.3395-14.2014.
The unique physiological and morphological properties of neuronal populations are crucial for the appropriate functioning of neuronal circuits. Alternative splicing represents an attractive mechanism for generating cell type-specific molecular repertoires that steer neuronal development and function. However, the mechanisms that link neuronal identity to alternative splicing programs are poorly understood. We report that cell type-specific, mutually exclusive expression of two alternative splicing regulators, SLM1 and SLM2, in the mouse hippocampus is achieved by a cross-repression mechanism. Deletion of SLM2 in vivo modifies alternative splicing of its paralog Slm1 and stabilizes its mRNA, resulting in expression of SLM1 in previously SLM2-expressing cells. Despite this ectopic upregulation of SLM1, loss of SLM2 severely disrupts the alternative splicing regulation of Nrxn1, Nrxn2, and Nrxn3, highlighting that the two SLM paralogs have partially divergent functions. Our study uncovers a hierarchical, SLM2-dependent mechanism for establishing cell type-specific expression of neuronal splicing regulators in vivo.
神经元群体独特的生理和形态特性对于神经回路的正常运作至关重要。可变剪接是一种颇具吸引力的机制,可用于生成指导神经元发育和功能的细胞类型特异性分子库。然而,将神经元身份与可变剪接程序联系起来的机制仍知之甚少。我们报告称,小鼠海马体中两种可变剪接调节因子SLM1和SLM2的细胞类型特异性互斥表达是通过一种交叉抑制机制实现的。体内删除SLM2会改变其旁系同源物Slm1的可变剪接并稳定其mRNA,导致SLM1在先前表达SLM2的细胞中表达。尽管SLM1出现了这种异位上调,但SLM2的缺失严重破坏了Nrxn1、Nrxn2和Nrxn3的可变剪接调控,这突出表明这两个SLM旁系同源物具有部分不同的功能。我们的研究揭示了一种体内建立神经元剪接调节因子细胞类型特异性表达的分级、依赖SLM2的机制。