Suppr超能文献

CaMKII/NMDAR复合物稳定维持长时程增强(LTP)的生化原理。

Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.

作者信息

Lisman John, Raghavachari Sridhar

机构信息

Brandeis University, Department of Biology and Volen Center for Complex Systems, 415 South Street-MS008, Waltham, MA 02454, United States Minor Outlying Islands.

Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States.

出版信息

Brain Res. 2015 Sep 24;1621:51-61. doi: 10.1016/j.brainres.2014.12.010. Epub 2014 Dec 13.

Abstract

Memory involves the storage of information at synapses by an LTP-like process. This information storage is synapse specific and can endure for years despite the turnover of all synaptic proteins. There must, therefore, be special principles that underlie the stability of LTP. Recent experimental results suggest that LTP is maintained by the complex of CaMKII with the NMDAR. Here we consider the specifics of the CaMKII/NMDAR molecular switch, with the goal of understanding the biochemical principles that underlie stable information storage by synapses. Consideration of a variety of experimental results suggests that multiple principles are involved. One switch requirement is to prevent spontaneous transitions from the off to the on state. The highly cooperative nature of CaMKII autophosphorylation by Ca(2+) (Hill coefficient of 8) and the fact that formation of the CaMKII/NMDAR complex requires release of CaMKII from actin are mechanisms that stabilize the off state. The stability of the on state depends critically on intersubunit autophosphorylation, a process that restores any loss of pT286 due to phosphatase activity. Intersubunit autophosphorylation is also important in explaining why on state stability is not compromised by protein turnover. Recent evidence suggests that turnover occurs by subunit exchange. Thus, stability could be achieved if a newly inserted unphosphorylated subunit was autophosphorylated by a neighboring subunit. Based on other recent work, we posit a novel mechanism that enhances the stability of the on state by protection of pT286 from phosphatases. We posit that the binding of the NMNDAR to CaMKII forces pT286 into the catalytic site of a neighboring subunit, thereby protecting pT286 from phosphatases. A final principle concerns the role of structural changes. The binding of CaMKII to the NMDAR may act as a tag to organize the binding of further proteins that produce the synapse enlargement that underlies late LTP. We argue that these structural changes not only enhance transmission, but also enhance the stability of the CaMKII/NMDAR complex. Together, these principles provide a mechanistic framework for understanding how individual synapses produce stable information storage. This article is part of a Special Issue entitled SI: Brain and Memory.

摘要

记忆涉及通过类长时程增强(LTP)过程在突触处存储信息。这种信息存储具有突触特异性,并且尽管所有突触蛋白都在更新,但仍可维持数年。因此,必然存在一些特殊原理支撑着LTP的稳定性。最近的实验结果表明,LTP由CaMKII与NMDAR的复合物维持。在此,我们考虑CaMKII/NMDAR分子开关的具体情况,目的是理解突触稳定信息存储背后的生化原理。对各种实验结果的考量表明涉及多种原理。一个开关要求是防止从关闭状态自发转变为开启状态。Ca(2+)介导的CaMKII自身磷酸化具有高度协同性(希尔系数为8),以及CaMKII/NMDAR复合物的形成需要CaMKII从肌动蛋白上释放这一事实,都是稳定关闭状态的机制。开启状态的稳定性关键取决于亚基间自身磷酸化,这一过程可恢复因磷酸酶活性导致的pT286的任何损失。亚基间自身磷酸化在解释开启状态稳定性为何不受蛋白质更新影响方面也很重要。最近的证据表明更新是通过亚基交换发生的。因此,如果新插入的未磷酸化亚基被相邻亚基自身磷酸化,就可以实现稳定性。基于其他近期研究工作,我们提出一种新机制,即通过保护pT286不被磷酸酶作用来增强开启状态的稳定性。我们假定NMNDAR与CaMKII的结合会迫使pT286进入相邻亚基的催化位点,从而保护pT286不被磷酸酶作用。最后一个原理涉及结构变化的作用。CaMKII与NMDAR的结合可能作为一种标记,来组织进一步蛋白质的结合,这些蛋白质会导致突触增大,这是晚期LTP的基础。我们认为这些结构变化不仅增强了传递,还增强了CaMKII/NMDAR复合物的稳定性。总之,这些原理为理解单个突触如何产生稳定的信息存储提供了一个机制框架。本文是名为“SI:大脑与记忆”的特刊的一部分。

相似文献

1
Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
Brain Res. 2015 Sep 24;1621:51-61. doi: 10.1016/j.brainres.2014.12.010. Epub 2014 Dec 13.
3
CaMKII T286 phosphorylation has distinct essential functions in three forms of long-term plasticity.
J Biol Chem. 2022 Sep;298(9):102299. doi: 10.1016/j.jbc.2022.102299. Epub 2022 Jul 21.
4
The CaMKII/NMDAR complex as a molecular memory.
Mol Brain. 2013 Feb 14;6:10. doi: 10.1186/1756-6606-6-10.
5
CaMKII regulation in information processing and storage.
Trends Neurosci. 2012 Oct;35(10):607-18. doi: 10.1016/j.tins.2012.05.003. Epub 2012 Jun 19.
6
Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength.
J Neurosci. 2011 Jun 22;31(25):9170-8. doi: 10.1523/JNEUROSCI.1250-11.2011.
7
On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII.
PLoS One. 2012;7(11):e49293. doi: 10.1371/journal.pone.0049293. Epub 2012 Nov 8.
9
Long-term potentiation and the role of N-methyl-D-aspartate receptors.
Brain Res. 2015 Sep 24;1621:5-16. doi: 10.1016/j.brainres.2015.01.016. Epub 2015 Jan 22.
10
DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific.
Cell Rep. 2017 Jun 13;19(11):2231-2243. doi: 10.1016/j.celrep.2017.05.068.

引用本文的文献

1
CaMKII autophosphorylation is the only enzymatic event required for synaptic memory.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2402783121. doi: 10.1073/pnas.2402783121. Epub 2024 Jun 18.
2
Excitation-transcription coupling, neuronal gene expression and synaptic plasticity.
Nat Rev Neurosci. 2023 Nov;24(11):672-692. doi: 10.1038/s41583-023-00742-5. Epub 2023 Sep 29.
3
Synaptic plasticity in schizophrenia pathophysiology.
IBRO Neurosci Rep. 2023 Feb 4;14:244-252. doi: 10.1016/j.ibneur.2023.01.008. eCollection 2023 Jun.
4
Synaptic memory and CaMKII.
Physiol Rev. 2023 Oct 1;103(4):2877-2925. doi: 10.1152/physrev.00034.2022. Epub 2023 Jun 8.
5
Synaptic plasticity in schizophrenia pathophysiology.
IBRO Neurosci Rep. 2022 Oct 31;13:478-487. doi: 10.1016/j.ibneur.2022.10.008. eCollection 2022 Dec.
6
The role of hippocampal CaMKII in resilience to trauma-related psychopathology.
Neurobiol Stress. 2022 Nov 30;21:100506. doi: 10.1016/j.ynstr.2022.100506. eCollection 2022 Nov.
8
Role of Ca/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses.
Front Mol Neurosci. 2022 Jun 20;15:855752. doi: 10.3389/fnmol.2022.855752. eCollection 2022.
9
Autoregulation of switching behavior by cellular compartment size.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2116054119. doi: 10.1073/pnas.2116054119. Epub 2022 Mar 29.
10
Equilibrium mechanisms of self-limiting assembly.
Rev Mod Phys. 2021 Apr-Jun;93(2). doi: 10.1103/revmodphys.93.025008. Epub 2021 Jun 11.

本文引用的文献

1
Engineering a memory with LTD and LTP.
Nature. 2014 Jul 17;511(7509):348-52. doi: 10.1038/nature13294. Epub 2014 Jun 1.
2
Structural and molecular remodeling of dendritic spine substructures during long-term potentiation.
Neuron. 2014 Apr 16;82(2):444-59. doi: 10.1016/j.neuron.2014.03.021.
3
Balance and stability of synaptic structures during synaptic plasticity.
Neuron. 2014 Apr 16;82(2):430-43. doi: 10.1016/j.neuron.2014.02.031.
5
In vitro reconstitution of a CaMKII memory switch by an NMDA receptor-derived peptide.
Biophys J. 2014 Mar 18;106(6):1414-20. doi: 10.1016/j.bpj.2014.01.026.
7
Enzymatic activity of CaMKII is not required for its interaction with the glutamate receptor subunit GluN2B.
Mol Pharmacol. 2013 Dec;84(6):834-43. doi: 10.1124/mol.113.089045. Epub 2013 Sep 20.
8
NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression.
PLoS One. 2013 Jun 4;8(6):e65350. doi: 10.1371/journal.pone.0065350. Print 2013.
9
Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors.
Neuron. 2013 May 22;78(4):615-22. doi: 10.1016/j.neuron.2013.03.009.
10
Triheteromeric NMDA receptors at hippocampal synapses.
J Neurosci. 2013 May 22;33(21):9150-60. doi: 10.1523/JNEUROSCI.0829-13.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验