Lisman John, Raghavachari Sridhar
Brandeis University, Department of Biology and Volen Center for Complex Systems, 415 South Street-MS008, Waltham, MA 02454, United States Minor Outlying Islands.
Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States.
Brain Res. 2015 Sep 24;1621:51-61. doi: 10.1016/j.brainres.2014.12.010. Epub 2014 Dec 13.
Memory involves the storage of information at synapses by an LTP-like process. This information storage is synapse specific and can endure for years despite the turnover of all synaptic proteins. There must, therefore, be special principles that underlie the stability of LTP. Recent experimental results suggest that LTP is maintained by the complex of CaMKII with the NMDAR. Here we consider the specifics of the CaMKII/NMDAR molecular switch, with the goal of understanding the biochemical principles that underlie stable information storage by synapses. Consideration of a variety of experimental results suggests that multiple principles are involved. One switch requirement is to prevent spontaneous transitions from the off to the on state. The highly cooperative nature of CaMKII autophosphorylation by Ca(2+) (Hill coefficient of 8) and the fact that formation of the CaMKII/NMDAR complex requires release of CaMKII from actin are mechanisms that stabilize the off state. The stability of the on state depends critically on intersubunit autophosphorylation, a process that restores any loss of pT286 due to phosphatase activity. Intersubunit autophosphorylation is also important in explaining why on state stability is not compromised by protein turnover. Recent evidence suggests that turnover occurs by subunit exchange. Thus, stability could be achieved if a newly inserted unphosphorylated subunit was autophosphorylated by a neighboring subunit. Based on other recent work, we posit a novel mechanism that enhances the stability of the on state by protection of pT286 from phosphatases. We posit that the binding of the NMNDAR to CaMKII forces pT286 into the catalytic site of a neighboring subunit, thereby protecting pT286 from phosphatases. A final principle concerns the role of structural changes. The binding of CaMKII to the NMDAR may act as a tag to organize the binding of further proteins that produce the synapse enlargement that underlies late LTP. We argue that these structural changes not only enhance transmission, but also enhance the stability of the CaMKII/NMDAR complex. Together, these principles provide a mechanistic framework for understanding how individual synapses produce stable information storage. This article is part of a Special Issue entitled SI: Brain and Memory.
记忆涉及通过类长时程增强(LTP)过程在突触处存储信息。这种信息存储具有突触特异性,并且尽管所有突触蛋白都在更新,但仍可维持数年。因此,必然存在一些特殊原理支撑着LTP的稳定性。最近的实验结果表明,LTP由CaMKII与NMDAR的复合物维持。在此,我们考虑CaMKII/NMDAR分子开关的具体情况,目的是理解突触稳定信息存储背后的生化原理。对各种实验结果的考量表明涉及多种原理。一个开关要求是防止从关闭状态自发转变为开启状态。Ca(2+)介导的CaMKII自身磷酸化具有高度协同性(希尔系数为8),以及CaMKII/NMDAR复合物的形成需要CaMKII从肌动蛋白上释放这一事实,都是稳定关闭状态的机制。开启状态的稳定性关键取决于亚基间自身磷酸化,这一过程可恢复因磷酸酶活性导致的pT286的任何损失。亚基间自身磷酸化在解释开启状态稳定性为何不受蛋白质更新影响方面也很重要。最近的证据表明更新是通过亚基交换发生的。因此,如果新插入的未磷酸化亚基被相邻亚基自身磷酸化,就可以实现稳定性。基于其他近期研究工作,我们提出一种新机制,即通过保护pT286不被磷酸酶作用来增强开启状态的稳定性。我们假定NMNDAR与CaMKII的结合会迫使pT286进入相邻亚基的催化位点,从而保护pT286不被磷酸酶作用。最后一个原理涉及结构变化的作用。CaMKII与NMDAR的结合可能作为一种标记,来组织进一步蛋白质的结合,这些蛋白质会导致突触增大,这是晚期LTP的基础。我们认为这些结构变化不仅增强了传递,还增强了CaMKII/NMDAR复合物的稳定性。总之,这些原理为理解单个突触如何产生稳定的信息存储提供了一个机制框架。本文是名为“SI:大脑与记忆”的特刊的一部分。