Suppr超能文献

评估功能磁共振成像(fMRI)数据中时变连通性的动态脑图谱:应用于健康对照者和精神分裂症患者。

Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia.

作者信息

Yu Qingbao, Erhardt Erik B, Sui Jing, Du Yuhui, He Hao, Hjelm Devon, Cetin Mustafa S, Rachakonda Srinivas, Miller Robyn L, Pearlson Godfrey, Calhoun Vince D

机构信息

The Mind Research Network, Albuquerque, NM 87106, USA.

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87113, USA.

出版信息

Neuroimage. 2015 Feb 15;107:345-355. doi: 10.1016/j.neuroimage.2014.12.020. Epub 2014 Dec 13.

Abstract

Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting-state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia, which may underscore the abnormal brain performance in this mental illness.

摘要

基于图论的分析已广泛应用于脑成像研究,大脑连接性拓扑属性的改变已成为精神疾病(如精神分裂症)的重要特征。然而,以往大多数研究都集中在静态脑图的图指标上,忽略了大脑连接性随时间的波动。在此,我们开发了一个新框架,用于获取静息态功能磁共振成像数据中时变功能脑连接性的动态图属性,并将其应用于健康对照者(HCs)和精神分裂症患者(SZs)。具体而言,脑图的节点由通过组独立成分分析(ICA)识别的内在连接网络(ICNs)定义。通过ICNs的滑动时间窗ICA时间序列的相关性估计时变脑连接性的动态图指标。基于时变脑图之间节点连接强度的相关性检测一级和二级连接状态。我们的结果表明,精神分裂症患者在动态图指标上的方差降低。与先前的静态功能脑连接性研究一致,所识别的一级连接状态的图测量值在精神分裂症患者中较低。此外,更多的一级连接状态与二级连接状态不相关,二级连接状态类似于通过整个扫描计算的静态连接模式。总体而言,这些发现为精神分裂症中动态脑图的改变提供了新证据,这可能凸显了这种精神疾病中大脑功能的异常。

相似文献

7
Time-dependence of graph theory metrics in functional connectivity analysis.功能连接性分析中图形理论指标的时间依赖性。
Neuroimage. 2016 Jan 15;125:601-615. doi: 10.1016/j.neuroimage.2015.10.070. Epub 2015 Oct 27.

引用本文的文献

3
Hemodynamic cortical ripples through cyclicity analysis.通过周期性分析的血流动力学皮质涟漪
Netw Neurosci. 2024 Dec 10;8(4):1105-1128. doi: 10.1162/netn_a_00392. eCollection 2024.

本文引用的文献

3
Brain networks in schizophrenia.精神分裂症的脑网络。
Neuropsychol Rev. 2014 Mar;24(1):32-48. doi: 10.1007/s11065-014-9248-7. Epub 2014 Feb 6.
6
Definition and characterization of an extended social-affective default network.扩展社交情感默认网络的定义与特征描述。
Brain Struct Funct. 2015 Mar;220(2):1031-49. doi: 10.1007/s00429-013-0698-0. Epub 2014 Jan 8.
7
Exploring the network dynamics underlying brain activity during rest.探索静息状态下大脑活动的网络动力学。
Prog Neurobiol. 2014 Mar;114:102-31. doi: 10.1016/j.pneurobio.2013.12.005. Epub 2013 Dec 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验