Suppr超能文献

心脏交感神经元中去甲肾上腺素的光遗传学释放会改变机械和电功能。

Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

作者信息

Wengrowski Anastasia M, Wang Xin, Tapa Srinivas, Posnack Nikki Gillum, Mendelowitz David, Kay Matthew W

机构信息

Department of Biomedical Engineering, The George Washington University, Phillips Hall, Room 607, 801 22nd Street NW, Washington, DC 20052, USA.

Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA.

出版信息

Cardiovasc Res. 2015 Feb 1;105(2):143-50. doi: 10.1093/cvr/cvu258. Epub 2014 Dec 16.

Abstract

AIMS

Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function.

METHODS AND RESULTS

The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation.

CONCLUSION

This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors.

摘要

目的

交感神经元释放去甲肾上腺素(NE)可通过激活β-肾上腺素能受体提高心率(HR)和增强心肌收缩力,而这种交感神经兴奋是引发心律失常的关键风险因素。对心脏功能的β-肾上腺素能调节的研究通常涉及给予外源性β-肾上腺素能受体激动剂,以绕过交感神经末梢的参与直接引发整体β-肾上腺素能受体激活。在本研究中,我们使用一种新方法激活Langendorff灌流心脏心肌内的交感纤维,同时测量电和机械功能的变化。

方法与结果

光激活的光遗传学蛋白通道视紫红质-2(ChR2)在小鼠儿茶酚胺能交感神经元中表达。然后对交感纤维进行光激活,以检查收缩力、心率和心脏电活动的变化。在有或无交感纤维光激活暴露的情况下测量心律失常的发生率,并对心脏进行光学标测以检测动作电位持续时间和传导速度的变化。结果表明,光刺激释放NE后,收缩力和心率均增加,收缩力和心率分别增加34.5±5.5%和25.0±9.3%。交感纤维的光刺激也使心脏更容易发生心律失常,发生率和严重程度更高。此外,光学标测的动作电位在光刺激后显示平台期有小幅但显著的缩短(-5.5±1.0毫秒)。

结论

本研究描述了一种强大且与临床相关的新模型,用于研究因交感神经末梢活动增加及由此导致的心肌细胞β-肾上腺素能受体激活而产生的心律失常。

相似文献

1
Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.
Cardiovasc Res. 2015 Feb 1;105(2):143-50. doi: 10.1093/cvr/cvu258. Epub 2014 Dec 16.
3
Age-related changes in cardiac electrophysiology and calcium handling in response to sympathetic nerve stimulation.
J Physiol. 2018 Sep;596(17):3977-3991. doi: 10.1113/JP276396. Epub 2018 Aug 3.
4
5
Sympathetic modulation of electrical activation in normal and infarcted myocardium: implications for arrhythmogenesis.
Am J Physiol Heart Circ Physiol. 2017 Mar 1;312(3):H608-H621. doi: 10.1152/ajpheart.00575.2016. Epub 2017 Jan 13.
6
Response to cardiac sympathetic activation in transgenic mice overexpressing beta 2-adrenergic receptor.
Am J Physiol. 1996 Aug;271(2 Pt 2):H630-6. doi: 10.1152/ajpheart.1996.271.2.H630.
8
Epinephrine in the heart: uptake and release, but no facilitation of norepinephrine release.
Circulation. 2002 Aug 13;106(7):860-5. doi: 10.1161/01.cir.0000000000.00000.00.
10
Sympathetic activation and increased extracellular potassium: synergistic effects on cardiac potassium uptake and arrhythmias.
J Cardiovasc Pharmacol. 1993 Jun;21(6):977-82. doi: 10.1097/00005344-199306000-00020.

引用本文的文献

1
Molecular and functional diversity of the autonomic nervous system.
Nat Rev Neurosci. 2025 Jul 3. doi: 10.1038/s41583-025-00941-2.
3
Molecular and cellular neurocardiology in heart disease.
J Physiol. 2025 Mar;603(7):1689-1728. doi: 10.1113/JP284739. Epub 2024 May 22.
4
Cardiac optogenetics: shining light on signaling pathways.
Pflugers Arch. 2023 Dec;475(12):1421-1437. doi: 10.1007/s00424-023-02892-y. Epub 2023 Dec 14.
6
Optogenetics for light control of biological systems.
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00136-4. Epub 2022 Jul 21.
8
Optogenetic Control of Heart Rhythm: Lightly Guiding the Cardiac Pace.
Methods Mol Biol. 2022;2483:205-229. doi: 10.1007/978-1-0716-2245-2_13.
9
Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review.
Front Physiol. 2021 Nov 18;12:769586. doi: 10.3389/fphys.2021.769586. eCollection 2021.
10
Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove.
Front Physiol. 2021 Aug 31;12:726895. doi: 10.3389/fphys.2021.726895. eCollection 2021.

本文引用的文献

2
The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias.
Pharmacol Ther. 2013 Aug;139(2):213-48. doi: 10.1016/j.pharmthera.2013.04.008. Epub 2013 Apr 12.
3
Cardiac output, at rest and during exercise, before and during myocardial ischemia, reperfusion, and infarction in conscious mice.
Am J Physiol Regul Integr Comp Physiol. 2013 Feb 15;304(4):R286-95. doi: 10.1152/ajpregu.00517.2012. Epub 2013 Jan 9.
4
Functional differences between junctional and extrajunctional adrenergic receptor activation in mammalian ventricle.
Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H579-88. doi: 10.1152/ajpheart.00754.2012. Epub 2012 Dec 15.
5
The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping.
Am J Physiol Heart Circ Physiol. 2012 Jul 15;303(2):H156-67. doi: 10.1152/ajpheart.00333.2012. Epub 2012 May 25.
6
Local β-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia.
Circ Res. 2012 May 25;110(11):1454-64. doi: 10.1161/CIRCRESAHA.111.262345. Epub 2012 Apr 26.
8
Atrial tachycardia/fibrillation in the connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse.
Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1402-11. doi: 10.1152/ajpheart.01094.2010. Epub 2011 Jan 14.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验