Müllenbroich M Caroline, Kelly Allen, Acker Corey, Bub Gil, Bruegmann Tobias, Di Bona Anna, Entcheva Emilia, Ferrantini Cecilia, Kohl Peter, Lehnart Stephan E, Mongillo Marco, Parmeggiani Camilla, Richter Claudia, Sasse Philipp, Zaglia Tania, Sacconi Leonardo, Smith Godfrey L
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom.
Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.
Front Physiol. 2021 Nov 18;12:769586. doi: 10.3389/fphys.2021.769586. eCollection 2021.
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
用于记录和操纵细胞电生理学的光学技术在短短几十年间取得了迅速进展。这些进展使得能够在多个尺度上分析心脏细胞动力学,同时在很大程度上克服了与使用电极相关的缺点。光遗传学的最新出现为区域和组织水平的电生理控制开辟了新的可能性,并有望用于未来新颖的临床应用。本文源自2018年的国际NOTICE研讨会,回顾了用于心脏电生理研究的最新光学技术及其潜在的生物物理学原理。文中回顾了光学报告器和光遗传学致动器的设计与性能以及当前探针的局限性。详细阐述了光与心脏组织相互作用的物理学原理,并介绍了使用光学传感器和致动器所面临的相关挑战。案例研究包括利用光漂白后的荧光恢复和超分辨率显微镜来探索心脏细胞的微观结构,以及对应用于心脏组织的双光子和光片技术的综述。文中回顾了心脏光遗传学的出现,并描述了目前探索光遗传学潜在临床应用的工作。讨论了结合光遗传学操纵和光学电压测量的方法,涉及到在开环和闭环系统中实时操纵全心电生理学以研究终止螺旋形心律失常的最佳方法的平台。介绍了基于光学方法的设计与操作,这些方法可实现高通量心脏电生理测定。最后,描述了光声成像和应力传感器的新兴技术以及这些技术在主流电生理研究中的未来发展和确立策略。