Zeng Jijiao, Singh Deepak, Gao Difeng, Chen Shulin
Department of Biological Systems Engineering, Bioprocessing and Bioproduct Engineering Laboratory (BBEL), Washington State University, L.J. Smith 213, Pullman, Washington 99163 USA.
Biotechnol Biofuels. 2014 Nov 29;7(1):161. doi: 10.1186/s13068-014-0161-3. eCollection 2014.
A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understanding the systematic degradation of lignin, hemicelluloses, and cellulose. This study attempts to reveal the complex biological degradation process of lignocellulosic biomass by Phanerochaete chrysosporium in order to provide new knowledge for the development of energy-efficient biorefineries.
In this study, we evaluated the performance of a fungal biodegradation model, Phanerochaete chrysosporium, in wheat straw through comprehensive analysis. We isolated milled straw lignin and cellulase enzyme-treated lignin from fungal-spent wheat straw to determine structural integrity and cellulase absorption isotherms. The results indicated that P. chrysosporium increased the total lignin content in residual biomass and also increased the cellulase adsorption kinetics in the resulting lignin. The binding strength increased from 117.4 mL/g to 208.7 mL/g in milled wood lignin and from 65.3 mL/g to 102.4 mL/g in cellulase enzyme lignin. A detailed structural dissection showed a reduction in the syringyl lignin/guaiacyl lignin ratio and the hydroxycinnamate/lignin ratio as predominant changes in fungi-spent lignin by heteronuclear single quantum coherence spectroscopy.
P. chrysosporium shows a preference for degradation of phenolic terminals without significantly destroying other lignin components to unzip carbohydrate polymers. This is an important step in fungal growth on wheat straw. The phenolics presumably locate at the terminal region of the lignin moiety and/or link with hemicellulose to form the lignin-carbohydrate complex. Findings may inform the development of a biomass hydrolytic enzyme combination to enhance lignocellulosic biomass hydrolysis and modify the targets in plant cell walls.
可持续生物燃料研究的一个关键重点是开发具有成本效益和节能的方法,以提高木质纤维素生物质的糖化率。人们已经做出了许多努力来确定纤维素水解中的关键问题。需氧真菌物种是碳循环的一个组成部分,配备了水解酶联合体,并为理解木质素、半纤维素和纤维素的系统降解提供了一个途径。本研究试图揭示黄孢原毛平革菌对木质纤维素生物质的复杂生物降解过程,以便为高效生物精炼厂的发展提供新知识。
在本研究中,我们通过综合分析评估了真菌生物降解模型黄孢原毛平革菌在小麦秸秆中的性能。我们从经真菌处理过的小麦秸秆中分离出磨碎的秸秆木质素和纤维素酶处理过的木质素,以确定其结构完整性和纤维素酶吸附等温线。结果表明,黄孢原毛平革菌增加了残余生物质中的总木质素含量,也增加了所得木质素中纤维素酶的吸附动力学。磨木木素中的结合强度从117.4 mL/g增加到208.7 mL/g,纤维素酶木质素中的结合强度从65.3 mL/g增加到102.4 mL/g。详细的结构剖析表明,通过异核单量子相干光谱法,丁香基木质素/愈创木基木质素比率和羟基肉桂酸酯/木质素比率降低是经真菌处理的木质素中的主要变化。
黄孢原毛平革菌表现出优先降解酚类末端的特性,而不会显著破坏其他木质素成分以解开碳水化合物聚合物。这是真菌在小麦秸秆上生长的重要一步。酚类物质可能位于木质素部分的末端区域和/或与半纤维素连接形成木质素-碳水化合物复合物。这些发现可能为开发生物质水解酶组合以增强木质纤维素生物质水解并改变植物细胞壁中的靶点提供参考。