Suppr超能文献

模拟微重力限制并破碎了以秸秆为基础的木质纤维素降解微生物群落。

Simulated microgravity confines and fragments the straw-based lignocellulose degrading microbial community.

作者信息

Liao Boyang, Feng Tianyi, Hou Sihan, Liu Hong, Feng Jiajie

机构信息

Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, Beijing, China.

International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, Beijing, China.

出版信息

Microbiol Spectr. 2025 Jun 3;13(6):e0246624. doi: 10.1128/spectrum.02466-24. Epub 2025 Apr 16.

Abstract

Crewed long-term and long-distance missions are the undoubted trends of human space exploration, which require a bioregenerative life support system (BLSS) and its efficient treatment of the highly lignocellulosic organic solid waste under microgravity. Under normal gravity and simulated microgravity effect (mµ-g) created by clinostats, we used the inoculum from the world's longest BLSS experiment "Lunar Palace 365" to ferment and degrade wheat straw. The straw and its lignocellulose contents' weight losses were significantly slowed down by mµ-g. By high-throughput sequencing and metabolomics on the fermentation material, we found that mµ-g largely shrank and fragmented the microbial community's phylogenetic molecular ecological network (pMEN), and enriched many reported antimicrobial metabolites, especially against fungi, the principal lignocellulose degrader (e.g., cyclohexylamine, an antifungal chemical, increased by 188 times). Inspired by the solid-media visualization experiment of (a representative fungus) which showed a confined hyphal expansion under mµ-g, we proposed a material-convection-based model: the degradation of complex and recalcitrant macromolecules like lignocellulose is a multistep and highly coordinative task for the microbial community, but the mµ-g physically destroyed the material convection in the fermentation material, which confined the diffusion of microbial cells, their metabolic products/substrates, and extracellular enzymes, thus fragmenting the microbial interactions needed for the degradation; the confined diffusion also caused a local resource shortage for next-step degraders, which resulted in a zonal concentration of microbes and thus intensified conflicts manifested in the release of antimicrobial metabolites, especially against fungi.IMPORTANCEThis convection-based model explains the observed phenomena and suggests proper mass-transfer-promoting methods for more "globalized" microbial interactions in such a community-based, highly coordinative, oligotrophic, mixed-phase (physically), and fungi-dominant application scenario under microgravity. The higher lignocellulose degradation efficiency thus achieved would certainly improve the bioregenerative life support system (BLSS) required for long-term space exploration missions. For non-space-exploration scenarios, this model could also serve as an additional illustration of both the biological and physical principles of such multistep bioprocesses.

摘要

载人长期和远距离任务无疑是人类太空探索的趋势,这需要一个生物再生生命支持系统(BLSS)及其在微重力条件下对高木质纤维素有机固体废物的有效处理。在正常重力和回转器产生的模拟微重力效应(mµ-g)下,我们使用了世界上最长的BLSS实验“月宫365”的接种物来发酵和降解小麦秸秆。mµ-g显著减缓了秸秆及其木质纤维素含量的重量损失。通过对发酵材料进行高通量测序和代谢组学分析,我们发现mµ-g大大缩小并分割了微生物群落的系统发育分子生态网络(pMEN),并富集了许多已报道的抗菌代谢物,尤其是针对主要木质纤维素降解菌真菌的代谢物(例如,抗真菌化学物质环己胺增加了188倍)。受(一种代表性真菌)的固体培养基可视化实验的启发,该实验显示在mµ-g下菌丝扩展受限,我们提出了一个基于物质对流的模型:像木质纤维素这样复杂且难降解的大分子的降解对于微生物群落来说是一项多步骤且高度协调的任务,但mµ-g物理破坏了发酵材料中的物质对流,这限制了微生物细胞、它们的代谢产物/底物和细胞外酶的扩散,从而分割了降解所需的微生物相互作用;受限扩散还导致下一步降解菌出现局部资源短缺,这导致微生物的区域集中,从而加剧了抗菌代谢物释放中表现出的冲突,尤其是针对真菌的冲突。

重要性

这种基于对流的模型解释了观察到的现象,并为在微重力下这种基于群落、高度协调、贫营养、混合相(物理)且以真菌为主导的应用场景中实现更“全球化”的微生物相互作用提出了适当的促进传质的方法。由此实现的更高的木质纤维素降解效率肯定会改善长期太空探索任务所需的生物再生生命支持系统(BLSS)。对于非太空探索场景,该模型也可以作为此类多步骤生物过程的生物学和物理原理的额外说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ad/12131793/e20f9e7db98a/spectrum.02466-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验