Suppr超能文献

压缩气体驱动激波管中与形状场相关的冲击波剖面的参数化方法。

A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.

作者信息

Sundaramurthy Aravind, Chandra Namas

机构信息

Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology , Newark, NJ , USA.

出版信息

Front Neurol. 2014 Dec 2;5:253. doi: 10.3389/fneur.2014.00253. eCollection 2014.

Abstract

Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models.

摘要

高爆炸药的引爆会产生冲击波、弹片和气态产物。虽然在爆炸中心附近直接暴露于爆炸冲击是一个令人担忧的问题,但冲击波即使在更远的距离也会对人体产生影响。当纯粹的冲击波遇到人体时,在没有弹片、坠落或气态产物的情况下,这种载荷被称为原发性爆炸载荷,也是本文的研究对象。波剖面的特征是爆炸超压、正持续时间和冲量,本文中称为冲击波参数(SWPs)。这些参数又由高爆炸药的强度以及人体与爆炸中心的距离唯一确定。波剖面的形状和大小决定了对人体的伤害严重程度。正如我们最近的一些研究(1-3)所示,波剖面不仅决定了人体(如动物)的存活情况,还决定了急性和慢性生物力学损伤以及随后的生化后遗症。精心设计和操作激波管以产生与现场相关的SWPs极其重要。此外,识别并消除在冲击波剖面中无意中引入的可能影响结果的伪影至关重要。在这项工作中,我们研究了激波管可调参数(SAPs)与可用于控制爆炸剖面的SWPs之间的关系;研究结果可轻松应用于许多实验室激波管。此外,激波剖面(大小和形状)的复制可与现场爆炸相关联,并且可以作为比较不同实验室结果的标准。通过明智地改变SAPs,如膜厚度、膛室长度(66.68-1209.68毫米)、测量位置和驱动气体类型(氮气、氦气),进行了40次实验。展示了SAPs对所得冲击波剖面的影响。此外,将ConWep软件中TNT爆炸的冲击波剖面与激波管获得的剖面进行了比较。总之,我们的实验结果表明,精心设计和操作的压缩气体激波管可以准确复制现场爆炸的爆炸时间剖面。在使用动物模型研究爆炸诱导的神经创伤的影响时,这种忠实的复制是必不可少的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验