Suppr超能文献

超越常规的导航:实验室可以从野外学到什么,以及野外可以从实验室学到什么。

Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab.

机构信息

Department of Psychology, University of California, Mailcode 1650, Berkeley, CA 94520-1650 USA.

Institut für Biologie, Freie Universität, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany.

出版信息

Mov Ecol. 2014 Feb 3;2(1):3. doi: 10.1186/2051-3933-2-3. eCollection 2014.

Abstract

Space is continuous. But the communities of researchers that study the cognitive map in non-humans are strangely divided, with debate over its existence found among behaviorists but not neuroscientists. To reconcile this and other debates within the field of navigation, we return to the concept of the parallel map theory, derived from data on hippocampal function in laboratory rodents. Here the cognitive map is redefined as the integrated map, which is a construction of dual mechanisms, one based on directional cues (bearing map) and the other on positional cues (sketch map). We propose that the dual navigational mechanisms of pigeons, the navigational map and the familiar area map, could be homologous to these mammalian parallel maps; this has implications for both research paradigms. Moreover, this has implications for the lab. To create a bearing map (and hence integrated map) from extended cues requires self-movement over a large enough space to sample and model these cues at a high resolution. Thus a navigator must be able to move freely to map extended cues; only then should the weighted hierarchy of available navigation mechanisms shift in favor of the integrated map. Because of the paucity of extended cues in the lab, the flexible solutions allowed by the integrated map should be rare, despite abundant neurophysiological evidence for the existence of the machinery needed to encode and map extended cues through voluntary movement. Not only do animals need to map extended cues but they must also have sufficient information processing capacity. This may require a specific ontogeny, in which the navigator's nervous system is exposed to naturally complex spatial contingencies, a circumstance that occurs rarely, if ever, in the lab. For example, free-ranging, flying animals must process more extended cues than walking animals and for this reason alone, the integrated map strategy may be found more reliably in some species. By taking concepts from ethology and the parallel map theory, we propose a path to directly integrating the three great experimental paradigms of navigation: the honeybee, the homing pigeon and the laboratory rodent, towards the goal of a robust, unified theory of animal navigation.

摘要

空间是连续的。但是,研究非人类认知地图的研究人员社区却奇怪地分裂了,行为主义者对其存在存在争议,但神经科学家却没有。为了解决这个问题和导航领域的其他争议,我们回到了来自实验室啮齿动物海马体功能数据的平行地图理论的概念。在这里,认知地图被重新定义为综合地图,它是双重机制的构建,一种基于方向线索(方位图),另一种基于位置线索(草图地图)。我们提出,鸽子的双重导航机制,导航地图和熟悉区域地图,可以与这些哺乳动物的平行地图同源;这对两个研究范式都有影响。此外,这对实验室也有影响。要从扩展线索中创建方位图(从而创建综合地图),需要在足够大的空间中进行自我运动,以高分辨率采样和建模这些线索。因此,导航器必须能够自由移动以绘制扩展线索;只有这样,可用导航机制的加权层次结构才会有利于综合地图。由于实验室中扩展线索的稀缺性,尽管有大量神经生理学证据表明存在通过自愿运动对扩展线索进行编码和映射的机制,但灵活的解决方案应该很少。不仅动物需要绘制扩展线索,而且它们还必须具有足够的信息处理能力。这可能需要特定的个体发生,在这种情况下,导航器的神经系统会暴露于自然复杂的空间偶然性中,这种情况在实验室中很少发生,如果有的话。例如,自由飞行的动物必须处理比步行动物更多的扩展线索,仅出于这个原因,集成地图策略可能在某些物种中更可靠地找到。通过从行为学和并行地图理论中获取概念,我们提出了一条直接整合导航的三个主要实验范例的路径:蜜蜂、归巢鸽和实验室啮齿动物,朝着动物导航的稳健、统一理论的目标前进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17d1/4267593/a4441d8211d9/40462_2013_15_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验