Suppr超能文献

通过转硫途径限制热量和蛋氨酸以控制内源性硫化氢的产生。

Calorie restriction and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway.

作者信息

Hine Christopher, Mitchell James R

机构信息

Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.

Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Exp Gerontol. 2015 Aug;68:26-32. doi: 10.1016/j.exger.2014.12.010. Epub 2014 Dec 16.

Abstract

H2S is a gas easily identified by its distinctive odor. Although environmental exposure to H2S has been viewed alternately as therapeutic or toxic through the centuries, H2S has recently regained recognition for its numerous beneficial biological effects. Most experiments documenting such benefits, including improved glucose tolerance, increased stress resistance, and even lifespan extension, are based on exposure of experimental organisms to exogenous sources of H2S. However, appreciation is growing for the importance of H2S produced endogenously by the evolutionary conserved transsulfuration pathway (TSP) in health and longevity. Recent data implicate H2S produced by the TSP in pleiotropic benefits of dietary restriction (DR), or reduced nutrient/energy intake without malnutrition. DR, best known as the most reliable way to extend lifespan in a wide range of experimental organisms, includes various regimens aimed at either reducing overall calorie intake (calorie restriction, intermittent/every-other-day fasting) or reducing particular nutrients such as protein or the essential amino acid, methionine (methionine restriction), with overlapping functional benefits on stress resistance, metabolic fitness and lifespan. Here we will review the small but growing body of literature linking the TSP to the functional benefits of DR in part through the production of endogenous H2S, with an emphasis on regulation of the TSP and H2S production by diet and mechanisms of beneficial H2S action.

摘要

硫化氢是一种因其独特气味而易于识别的气体。几个世纪以来,尽管环境中硫化氢的暴露时而被视为具有治疗作用,时而被视为有毒,但硫化氢最近因其众多有益的生物学效应而再次受到关注。大多数记录这些益处的实验,包括改善葡萄糖耐量、增强抗应激能力,甚至延长寿命,都是基于将实验生物暴露于外源性硫化氢来源。然而,人们越来越认识到进化保守的转硫途径(TSP)内源性产生的硫化氢在健康和长寿中的重要性。最近的数据表明,TSP产生的硫化氢在饮食限制(DR)或在无营养不良情况下减少营养/能量摄入的多效性益处中发挥作用。DR是在广泛的实验生物中延长寿命最可靠的方法,它包括各种旨在减少总热量摄入(热量限制、间歇性/隔日禁食)或减少特定营养素(如蛋白质或必需氨基酸蛋氨酸)(蛋氨酸限制)的方案,对抗应激能力、代谢适应性和寿命具有重叠的功能益处。在这里,我们将综述一小部分但不断增长的文献,这些文献将TSP与DR的功能益处联系起来,部分是通过内源性硫化氢的产生,重点是饮食对TSP和硫化氢产生的调节以及有益硫化氢作用的机制。

相似文献

2
Endogenous hydrogen sulfide production is essential for dietary restriction benefits.
Cell. 2015 Jan 15;160(1-2):132-44. doi: 10.1016/j.cell.2014.11.048. Epub 2014 Dec 23.
4
Is there a role of HS in mediating health span benefits of caloric restriction?
Biochem Pharmacol. 2018 Mar;149:91-100. doi: 10.1016/j.bcp.2018.01.030. Epub 2018 Jan 31.
5
Dietary and Endocrine Regulation of Endogenous Hydrogen Sulfide Production: Implications for Longevity.
Antioxid Redox Signal. 2018 Jun 1;28(16):1483-1502. doi: 10.1089/ars.2017.7434.
7
Methionine restriction leads to hyperhomocysteinemia and alters hepatic HS production capacity in Fischer-344 rats.
Mech Ageing Dev. 2018 Dec;176:9-18. doi: 10.1016/j.mad.2018.10.004. Epub 2018 Oct 25.
8
Methionine restriction and life-span control.
Ann N Y Acad Sci. 2016 Jan;1363:116-24. doi: 10.1111/nyas.12973. Epub 2015 Dec 10.
10
Increased transsulfuration mediates longevity and dietary restriction in Drosophila.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16831-6. doi: 10.1073/pnas.1102008108. Epub 2011 Sep 19.

引用本文的文献

2
The mammalian longevity associated acetylome.
Nat Commun. 2025 Apr 22;16(1):3749. doi: 10.1038/s41467-025-58762-x.
4
Caloric restriction, Sirtuins, and cardiovascular diseases.
Chin Med J (Engl). 2024 Apr 20;137(8):921-935. doi: 10.1097/CM9.0000000000003056. Epub 2024 Mar 25.
5
Effects of Dietary Methionine Restriction on Cognition in Mice.
Nutrients. 2023 Nov 29;15(23):4950. doi: 10.3390/nu15234950.
7
Role of Hydrogen Sulfide in Inflammatory Bowel Disease.
Antioxidants (Basel). 2023 Aug 6;12(8):1570. doi: 10.3390/antiox12081570.
8
Hepatic hydrogen sulfide levels are reduced in mouse model of Hutchinson-Gilford progeria syndrome.
Aging (Albany NY). 2023 Jun 23;15(12):5266-5278. doi: 10.18632/aging.204835.
10
Physiological and genomic evidence of cysteine degradation and aerobic hydrogen sulfide production in freshwater bacteria.
mSystems. 2023 Jun 29;8(3):e0020123. doi: 10.1128/msystems.00201-23. Epub 2023 Jun 7.

本文引用的文献

1
Endogenous hydrogen sulfide production is essential for dietary restriction benefits.
Cell. 2015 Jan 15;160(1-2):132-44. doi: 10.1016/j.cell.2014.11.048. Epub 2014 Dec 23.
2
miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression.
Antioxid Redox Signal. 2015 Jan 20;22(3):224-40. doi: 10.1089/ars.2014.5909. Epub 2014 Oct 27.
3
ATF4 activity: a common feature shared by many kinds of slow-aging mice.
Aging Cell. 2014 Dec;13(6):1012-8. doi: 10.1111/acel.12264. Epub 2014 Aug 26.
4
The TSC complex is required for the benefits of dietary protein restriction on stress resistance in vivo.
Cell Rep. 2014 Aug 21;8(4):1160-70. doi: 10.1016/j.celrep.2014.07.018. Epub 2014 Aug 14.
7
Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance.
Br J Pharmacol. 2014 Sep;171(18):4322-36. doi: 10.1111/bph.12773. Epub 2014 Jul 2.
8
Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification.
PLoS Genet. 2014 May 1;10(5):e1004347. doi: 10.1371/journal.pgen.1004347. eCollection 2014 May.
9
Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration.
Cell Stem Cell. 2014 Jul 3;15(1):66-78. doi: 10.1016/j.stem.2014.03.005. Epub 2014 Apr 10.
10
Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease.
Nature. 2014 May 1;509(7498):96-100. doi: 10.1038/nature13136. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验