Feldman-Trabelsi S, Touitou N, Nagar R, Schwartz Z, Michelson A, Shaki S, Avivi M Y, Lerrer B, Snir S, Cohen H Y
The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
The Sagol Healthy Human Longevity Center, Bar-Ilan University, Ramat-Gan, Israel.
Nat Commun. 2025 Apr 22;16(1):3749. doi: 10.1038/s41467-025-58762-x.
Despite extensive studies at the genomic, transcriptomic and metabolomic levels, the underlying mechanisms regulating longevity are incompletely understood. Post-translational protein acetylation is suggested to regulate aspects of longevity. To further explore the role of acetylation, we develop the PHARAOH computational tool based on the 100-fold differences in longevity within the mammalian class. Analyzing acetylome and proteome data across 107 mammalian species identifies 482 and 695 significant longevity-associated acetylated lysine residues in mice and humans, respectively. These sites include acetylated lysines in short-lived mammals that are replaced by permanent acetylation or deacetylation mimickers, glutamine or arginine, respectively, in long-lived mammals. Conversely, glutamine or arginine residues in short-lived mammals are replaced by reversibly acetylated lysine in long-lived mammals. Pathway analyses highlight the involvement of mitochondrial translation, cell cycle, fatty acid oxidation, transsulfuration, DNA repair and others in longevity. A validation assay shows that substituting lysine 386 with arginine in mouse cystathionine beta synthase, to attain the human sequence, increases the pro-longevity activity of this enzyme. Likewise, replacing the human ubiquitin-specific peptidase 10 acetylated lysine 714 with arginine as in short-lived mammals, reduces its anti-neoplastic function. Overall, in this work we propose a link between the conservation of protein acetylation and mammalian longevity.
尽管在基因组、转录组和代谢组水平上进行了广泛研究,但调节长寿的潜在机制仍未完全了解。翻译后蛋白质乙酰化被认为参与调节长寿的各个方面。为了进一步探索乙酰化的作用,我们基于哺乳动物类群中100倍的寿命差异开发了PHARAOH计算工具。分析107种哺乳动物的乙酰化蛋白质组和蛋白质组数据,分别在小鼠和人类中鉴定出482个和695个与长寿显著相关的乙酰化赖氨酸残基。这些位点包括短寿命哺乳动物中的乙酰化赖氨酸,在长寿命哺乳动物中分别被永久性乙酰化或去乙酰化模拟物谷氨酰胺或精氨酸取代。相反,短寿命哺乳动物中的谷氨酰胺或精氨酸残基在长寿命哺乳动物中被可逆乙酰化的赖氨酸取代。通路分析突出了线粒体翻译、细胞周期、脂肪酸氧化、转硫作用、DNA修复等在长寿中的作用。一项验证试验表明,将小鼠胱硫醚β合酶中的赖氨酸386替换为精氨酸以获得人类序列,可增加该酶的长寿促进活性。同样,像在短寿命哺乳动物中那样,将人类泛素特异性肽酶10的乙酰化赖氨酸714替换为精氨酸,会降低其抗肿瘤功能。总体而言,在这项工作中,我们提出了蛋白质乙酰化保守性与哺乳动物长寿之间的联系。