Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin, USA.
Freshwater and Marine Sciences Doctoral Program, University of Wisconsin-Madison , Madison, Wisconsin, USA.
mSystems. 2023 Jun 29;8(3):e0020123. doi: 10.1128/msystems.00201-23. Epub 2023 Jun 7.
The sulfur-containing amino acid cysteine is abundant in the environment, including in freshwater lakes. Biological cysteine degradation can result in hydrogen sulfide (HS), a toxic and ecologically relevant compound that is a central player in biogeochemical cycling in aquatic environments. Here, we investigated the ecological significance of cysteine in oxic freshwater, using isolated cultures, controlled experiments, and multiomics. We screened bacterial isolates enriched from natural lake water for their ability to produce HS when provided cysteine. We identified 29 isolates (Bacteroidota, Proteobacteria, and Actinobacteria) that produced HS. To understand the genomic and genetic basis for cysteine degradation and HS production, we further characterized three isolates using whole-genome sequencing (using a combination of short-read and long-read sequencing) and tracked cysteine and HS levels over their growth ranges: (Gammaproteobacteria), (Gammaproteobacteria), and (Bacteroidota). Cysteine decreased and HS increased, and all three genomes had genes involved in cysteine degradation. Finally, to assess the presence of these organisms and genes in the environment, we surveyed a 5-year time series of metagenomic data from the same isolation source (Lake Mendota, Madison, WI, USA) and identified their presence throughout the time series. Overall, our study shows that diverse isolated bacterial strains can use cysteine and produce HS under oxic conditions, and we show evidence using metagenomic data that this process may occur more broadly in natural freshwater lakes. Future considerations of sulfur cycling and biogeochemistry in oxic environments should account for HS production from the degradation of organosulfur compounds. IMPORTANCE Hydrogen sulfide (HS), a naturally occurring gas with both biological and abiotic origins, can be toxic to living organisms. In aquatic environments, HS production typically originates from anoxic (lacking oxygen) environments, such as sediments, or the bottom layers of thermally stratified lakes. However, the degradation of sulfur-containing amino acids such as cysteine, which all cells and life forms rely on, can be a source of ammonia and HS in the environment. Unlike other approaches for biological HS production such as dissimilatory sulfate reduction, cysteine degradation can occur in the presence of oxygen. Yet, little is known about how cysteine degradation influences sulfur availability and cycling in freshwater lakes. In our study, we identified diverse bacteria from a freshwater lake that can produce HS in the presence of O. Our study highlights the ecological importance of oxic HS production in natural ecosystems and necessitates a change in our outlook on sulfur biogeochemistry.
含硫氨基酸半胱氨酸在环境中含量丰富,包括在淡水湖中。生物半胱氨酸降解会导致硫化氢 (HS) 的产生,HS 是一种有毒且与生态相关的化合物,是水生环境生物地球化学循环的核心参与者。在这里,我们使用分离培养物、对照实验和多组学研究来研究含氧淡水环境中半胱氨酸的生态意义。我们筛选了从天然湖水富集的细菌分离物,以研究它们在提供半胱氨酸时产生 HS 的能力。我们确定了 29 个分离物(拟杆菌门、变形菌门和放线菌门)可以产生 HS。为了了解半胱氨酸降解和 HS 产生的基因组和遗传基础,我们使用全基因组测序(使用短读长和长读长测序的组合)进一步表征了三个分离物,并在其生长范围内跟踪了半胱氨酸和 HS 的水平:(γ变形菌),(γ变形菌)和(拟杆菌门)。半胱氨酸减少,HS 增加,所有三个基因组都有参与半胱氨酸降解的基因。最后,为了评估这些生物体和基因在环境中的存在,我们调查了来自同一分离源(美国威斯康星州麦迪逊市的门多塔湖)的 5 年时间序列的宏基因组数据,并在整个时间序列中发现了它们的存在。总体而言,我们的研究表明,不同的分离细菌菌株可以在有氧条件下使用半胱氨酸并产生 HS,并且我们使用宏基因组数据证明了这种过程可能更广泛地发生在天然淡水湖中。未来在有氧环境中考虑硫循环和生物地球化学时,应该考虑到有机硫化合物降解产生的 HS。重要性 硫化氢 (HS) 是一种自然产生的气体,具有生物和非生物起源,对生物体可能有毒。在水生环境中,HS 通常源自缺氧(缺乏氧气)环境,例如沉积物或热分层湖的底层。然而,含硫氨基酸(如所有细胞和生命形式都依赖的半胱氨酸)的降解可能是环境中氨和 HS 的来源。与其他生物 HS 产生方法(如异化硫酸盐还原)不同,半胱氨酸降解可以在有氧存在的情况下发生。然而,对于半胱氨酸降解如何影响淡水湖中硫的可用性和循环,人们知之甚少。在我们的研究中,我们从一个淡水湖中鉴定出了可以在氧气存在下产生 HS 的多种细菌。我们的研究强调了含氧 HS 在自然生态系统中的生态重要性,并需要改变我们对硫生物地球化学的看法。