Alawfi Bader
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia.
Front Cell Infect Microbiol. 2025 Aug 8;15:1615993. doi: 10.3389/fcimb.2025.1615993. eCollection 2025.
Rapid and precise malaria diagnosis is critical in resource-constrained settings to enable timely treatment and reduce mortality. Existing convolutional neural network (CNN) and capsule network hybrids, although effective, often suffer from high computational demands and limited generalizability across datasets.
We propose Hybrid Capsule Network (Hybrid CapNet), a lightweight architecture combining CNN-based feature extraction with dynamic capsule routing for accurate parasite identification and life-cycle stage classification. A novel composite loss function-integrating margin, focal, reconstruction, and regression losses-was employed to enhance classification accuracy, spatial localization, and robustness to class imbalance and annotation noise. The model was evaluated on four benchmark malaria datasets (MP-IDB, MP-IDB2, IML-Malaria, MD-2019) and assessed for both intra- and cross-dataset performance.
Hybrid CapNet achieves superior accuracy with significantly reduced computational cost (1.35M parameters, 0.26 GFLOPs), rendering it suitable for mobile diagnostic applications. Experimental results demonstrate up to 100% accuracy in multiclass classification and consistent improvements over baseline CNN architectures in cross-dataset evaluations. Grad-CAM visualizations confirm that the model focuses on biologically relevant parasite regions, validating interpretability.
The proposed framework delivers a pragmatic and interpretable solution for malaria diagnosis, balancing high accuracy with minimal computational requirements, and demonstrates strong potential for deployment in real-world, resource-limited clinical environments.
在资源有限的环境中,快速准确的疟疾诊断对于实现及时治疗和降低死亡率至关重要。现有的卷积神经网络(CNN)和胶囊网络混合模型虽然有效,但往往计算需求高,且在不同数据集上的通用性有限。
我们提出了混合胶囊网络(Hybrid CapNet),这是一种轻量级架构,将基于CNN的特征提取与动态胶囊路由相结合,用于准确的寄生虫识别和生命周期阶段分类。采用了一种新颖的复合损失函数,融合了边际损失、焦点损失、重建损失和回归损失,以提高分类准确率、空间定位能力以及对类别不平衡和标注噪声的鲁棒性。该模型在四个基准疟疾数据集(MP-IDB、MP-IDB2、IML-Malaria、MD-2019)上进行了评估,并对数据集内和跨数据集性能进行了评估。
混合胶囊网络实现了卓越的准确率,同时显著降低了计算成本(135万个参数,0.26 GFLOPs),使其适用于移动诊断应用。实验结果表明,在多类分类中准确率高达100%,并且在跨数据集评估中相对于基线CNN架构有持续的改进。Grad-CAM可视化结果证实该模型聚焦于与生物学相关的寄生虫区域,验证了其可解释性。
所提出的框架为疟疾诊断提供了一个实用且可解释的解决方案,在高精度与最低计算需求之间取得了平衡,并展示了在现实世界、资源有限的临床环境中部署的强大潜力。