Suppr超能文献

基于图像分析和机器学习的疟疾检测

Image analysis and machine learning for detecting malaria.

机构信息

U.S. National Library of Medicine, National Institutes of Health, Bethesda, Maryland.

Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.

出版信息

Transl Res. 2018 Apr;194:36-55. doi: 10.1016/j.trsl.2017.12.004. Epub 2018 Jan 12.

Abstract

Malaria remains a major burden on global health, with roughly 200 million cases worldwide and more than 400,000 deaths per year. Besides biomedical research and political efforts, modern information technology is playing a key role in many attempts at fighting the disease. One of the barriers toward a successful mortality reduction has been inadequate malaria diagnosis in particular. To improve diagnosis, image analysis software and machine learning methods have been used to quantify parasitemia in microscopic blood slides. This article gives an overview of these techniques and discusses the current developments in image analysis and machine learning for microscopic malaria diagnosis. We organize the different approaches published in the literature according to the techniques used for imaging, image preprocessing, parasite detection and cell segmentation, feature computation, and automatic cell classification. Readers will find the different techniques listed in tables, with the relevant articles cited next to them, for both thin and thick blood smear images. We also discussed the latest developments in sections devoted to deep learning and smartphone technology for future malaria diagnosis.

摘要

疟疾仍然是全球卫生的主要负担,全球约有 2 亿例病例,每年有超过 40 万人死亡。除了生物医学研究和政治努力外,现代信息技术在许多抗击疾病的尝试中发挥着关键作用。降低死亡率的一个障碍是疟疾诊断不充分。为了改善诊断,已经使用图像分析软件和机器学习方法来量化显微镜血片中的寄生虫载量。本文概述了这些技术,并讨论了用于显微镜疟疾诊断的图像分析和机器学习的当前发展。我们根据用于成像、图像预处理、寄生虫检测和细胞分割、特征计算以及自动细胞分类的技术,按照不同的方法对发表的文献进行了分类。读者可以在表中找到列出的不同技术,并在旁边列出相关文章,包括薄血涂片和厚血涂片图像。我们还讨论了深度学习和智能手机技术在未来疟疾诊断方面的最新进展。

相似文献

1
Image analysis and machine learning for detecting malaria.基于图像分析和机器学习的疟疾检测
Transl Res. 2018 Apr;194:36-55. doi: 10.1016/j.trsl.2017.12.004. Epub 2018 Jan 12.
6
Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears.基于深度学习的智能手机厚血涂片疟原虫检测
IEEE J Biomed Health Inform. 2020 May;24(5):1427-1438. doi: 10.1109/JBHI.2019.2939121. Epub 2019 Sep 23.

引用本文的文献

本文引用的文献

1
Applying Faster R-CNN for Object Detection on Malaria Images.将更快的区域卷积神经网络(Faster R-CNN)应用于疟疾图像的目标检测
Conf Comput Vis Pattern Recognit Workshops. 2017 Jul;2017:808-813. doi: 10.1109/cvprw.2017.112. Epub 2021 Nov 18.
5
Image classification of unlabeled malaria parasites in red blood cells.红细胞中未标记疟原虫的图像分类。
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3981-3984. doi: 10.1109/EMBC.2016.7591599.
6
Evaluation of the Parasight Platform for Malaria Diagnosis.用于疟疾诊断的Parasight平台评估。
J Clin Microbiol. 2017 Mar;55(3):768-775. doi: 10.1128/JCM.02155-16. Epub 2016 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验