Suppr超能文献

基于蚁群优化算法的CT图像肺结节聚类方法。

Ant colony optimization approaches to clustering of lung nodules from CT images.

作者信息

Gopalakrishnan Ravichandran C, Kuppusamy Veerakumar

机构信息

SCAD Institute of Technology, Palladam, Coimbatore 641664, India.

Department of ECE, RVS College of Engineering and Technology, Dindigul 624005, India.

出版信息

Comput Math Methods Med. 2014;2014:572494. doi: 10.1155/2014/572494. Epub 2014 Nov 26.

Abstract

Lung cancer is becoming a threat to mankind. Applying machine learning algorithms for detection and segmentation of irregular shaped lung nodules remains a remarkable milestone in CT scan image analysis research. In this paper, we apply ACO algorithm for lung nodule detection. We have compared the performance against three other algorithms, namely, Otsu algorithm, watershed algorithm, and global region based segmentation. In addition, we suggest a novel approach which involves variations of ACO, namely, refined ACO, logical ACO, and variant ACO. Variant ACO shows better reduction in false positives. In addition we propose black circular neighborhood approach to detect nodule centers from the edge detected image. Genetic algorithm based clustering is performed to cluster the nodules based on intensity, shape, and size. The performance of the overall approach is compared with hierarchical clustering to establish the improvisation in the proposed approach.

摘要

肺癌正成为对人类的一种威胁。将机器学习算法应用于不规则形状肺结节的检测和分割,仍然是CT扫描图像分析研究中的一个重要里程碑。在本文中,我们将蚁群优化(ACO)算法应用于肺结节检测。我们将其性能与其他三种算法进行了比较,即大津算法、分水岭算法和基于全局区域的分割算法。此外,我们提出了一种新颖的方法,该方法涉及蚁群优化的变体,即改进蚁群优化、逻辑蚁群优化和变体蚁群优化。变体蚁群优化在减少假阳性方面表现更好。此外,我们提出了黑色圆形邻域方法,从边缘检测图像中检测结节中心。基于遗传算法的聚类用于根据强度、形状和大小对结节进行聚类。将整体方法的性能与层次聚类进行比较,以确定所提出方法的改进之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f11/4265538/a3e2e8240399/CMMM2014-572494.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验