Suppr超能文献

使用质量阈值聚类、遗传算法和多样性指数自动检测孤立性肺结节。

Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index.

机构信息

Federal University of Maranhão, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65085-580 São Luís, MA, Brazil.

State University of Rio de Janeiro, São Francisco de Xavier, 524, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil.

出版信息

Artif Intell Med. 2014 Mar;60(3):165-77. doi: 10.1016/j.artmed.2013.11.002. Epub 2013 Nov 16.

Abstract

OBJECTIVE

The present work has the objective of developing an automatic methodology for the detection of lung nodules.

METHODOLOGY

The proposed methodology is based on image processing and pattern recognition techniques and can be summarized in three stages. In the first stage, the extraction and reconstruction of the pulmonary parenchyma is carried out and then enhanced to highlight its structures. In the second stage, nodule candidates are segmented. Finally, in the third stage, shape and texture features are extracted, selected and then classified using a support vector machine.

RESULTS

In the testing stage, with 140 new exams from the Lung Image Database Consortium image collection, 80% of which are for training and 20% are for testing, good results were achieved, as indicated by a sensitivity of 85.91%, a specificity of 97.70% and an accuracy of 97.55%, with a false positive rate of 1.82 per exam and 0.008 per slice and an area under the free response operating characteristic of 0.8062.

CONCLUSION

Lung cancer presents the highest mortality rate in addition to one of the smallest survival rates after diagnosis. An early diagnosis considerably increases the survival chance of patients. The methodology proposed herein contributes to this diagnosis by being a useful tool for specialists who are attempting to detect nodules.

摘要

目的

本研究旨在开发一种用于检测肺结节的自动方法。

方法

所提出的方法基于图像处理和模式识别技术,可以概括为三个阶段。在第一阶段,进行肺实质的提取和重建,并进行增强以突出其结构。在第二阶段,分割结节候选。最后,在第三阶段,使用支持向量机提取、选择和分类形状和纹理特征。

结果

在测试阶段,使用来自 Lung Image Database Consortium 图像集的 140 个新检查,其中 80%用于训练,20%用于测试,取得了良好的结果,敏感性为 85.91%,特异性为 97.70%,准确性为 97.55%,假阳性率为每例 1.82,每片 0.008,自由反应操作特征曲线下面积为 0.8062。

结论

肺癌的死亡率除了诊断后生存率最低之一外,还呈现出最高的死亡率。早期诊断大大增加了患者的生存机会。本文提出的方法通过成为专家试图检测结节的有用工具,有助于进行这种诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验