Irimia Manuel, Weatheritt Robert J, Ellis Jonathan D, Parikshak Neelroop N, Gonatopoulos-Pournatzis Thomas, Babor Mariana, Quesnel-Vallières Mathieu, Tapial Javier, Raj Bushra, O'Hanlon Dave, Barrios-Rodiles Miriam, Sternberg Michael J E, Cordes Sabine P, Roth Frederick P, Wrana Jeffrey L, Geschwind Daniel H, Blencowe Benjamin J
Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 88 Dr. Aiguader, Barcelona 08003, Spain.
Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
Cell. 2014 Dec 18;159(7):1511-23. doi: 10.1016/j.cell.2014.11.035.
Alternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide "microexons" display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism.
可变剪接(Alternative splicing,AS)产生了巨大的转录组和蛋白质组复杂性。然而,众多检测到的AS事件中哪些具有重要的生物学功能尚不清楚。在这里,我们定义了迄今为止在哺乳动物中描述的最大的功能协调、神经调节的AS程序。相对于该程序中的所有其他类型的AS,3 - 15个核苷酸的“微外显子”表现出最显著的进化保守性和类似开关的调控。这些微外显子调节参与神经发生的蛋白质相互作用结构域的功能。大多数神经微外显子由神经元特异性剪接因子nSR100/SRRM4通过其与相邻内含子增强子基序的结合来调控。在自闭症谱系障碍个体的大脑中,神经微外显子经常被错误调控,这种错误调控与nSR100水平降低有关。因此,研究结果揭示了一个高度保守的动态微外显子调控程序,该程序与神经发生过程中蛋白质相互作用网络的重塑相关,其错误调控与自闭症有关。