Nicklas Theresa A, O'Neil Carol E, Fulgoni Victor L
Department of Pediatrics, Baylor College of Medicine, USDA/Agricultural Research Service Children's Nutrition Research Center, Houston, TX;
School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA; and.
J Nutr. 2015 Jan;145(1):170S-6S. doi: 10.3945/jn.114.194068. Epub 2014 Dec 3.
Associations between food patterns and adiposity are poorly understood.
Two statistical approaches were used to examine the potential association between egg consumption and adiposity.
Participants (n = 18,987) aged ≥19 y were from the 2001-2008 NHANES who provided 24-h diet recall data, body mass index (BMI) and waist circumference (WC)-determined adiposity measures, and blood pressure, circulating insulin, glucose, and lipid concentrations were considered cardiovascular risk factors (CVRFs). Covariate-adjusted least-squares means ± SEs were generated.
The first statistical approach categorized participants into egg consumers or nonconsumers. Consumers had higher mean BMI (in kg/m(2); 28.7 ± 0.19; P = 0.006) and WC (98.2 ± 0.43 cm; P = 0.002) than did nonconsumers (28.2 ± 0.10 and 96.9 ± 0.23 cm, respectively). Second, cluster analysis identified 8 distinct egg consumption patterns (explaining 39.5% of the variance in percentage of energy within the food categories). Only 2 egg patterns [egg/meat, poultry, fish (MPF)/grains/vegetables and egg/MPF/grains], consumed by ≤2% of the population, drove the association (compared with the no-egg pattern) between egg consumption and BMI and WC. Another analysis controlled for the standard covariates and the other food groups consumed with eggs in those 2 egg patterns. Only the egg/MPF/other-grains pattern remained associated with BMI and WC (both P ≤ 0.0063). The pattern analyses identified associations between an egg pattern (egg/MPF/other grains/potatoes/other beverages) and diastolic blood pressure (DBP) and serum LDL cholesterol (both P ≤ 0.0063). A final analysis was conducted by adding percentage of energy from fast foods and medication use for diabetes to the covariates. The association between the egg/MPF/grains pattern and BMI and the egg/MPF/potatoes/other beverages and DBP and LDL cholesterol disappeared.
Care needs to be taken with data interpretation of diet and health risk factors and the choice of statistical analyses and covariates used in the analyses because these studies are typically used to generate hypotheses. Additional studies are needed to better understand these relations.
食物模式与肥胖之间的关联尚不清楚。
采用两种统计方法来研究鸡蛋摄入量与肥胖之间的潜在关联。
年龄≥19岁的参与者(n = 18,987)来自2001 - 2008年美国国家健康与营养检查调查(NHANES),他们提供了24小时饮食回忆数据、体重指数(BMI)和腰围(WC)(用于确定肥胖程度的指标),同时血压、循环胰岛素、血糖和血脂浓度被视为心血管危险因素(CVRF)。生成了经协变量调整的最小二乘均值±标准误。
第一种统计方法将参与者分为鸡蛋食用者和非食用者。食用者的平均BMI(单位:kg/m²;28.7±0.19;P = 0.006)和WC(98.2±0.43 cm;P = 0.002)高于非食用者(分别为28.2±0.10和96.9±0.23 cm)。其次,聚类分析确定了8种不同的鸡蛋食用模式(解释了食物类别中能量百分比方差的39.5%)。只有2种鸡蛋模式[鸡蛋/肉、禽、鱼(MPF)/谷物/蔬菜和鸡蛋/MPF/谷物],被≤2%的人群食用,推动了鸡蛋摄入量与BMI和WC之间的关联(与无鸡蛋模式相比)。另一项分析对标准协变量以及这2种鸡蛋模式中与鸡蛋一起食用的其他食物组进行了控制。只有鸡蛋/MPF/其他谷物模式仍与BMI和WC相关(P均≤0.0063)。模式分析确定了一种鸡蛋模式(鸡蛋/MPF/其他谷物/土豆/其他饮料)与舒张压(DBP)和血清低密度脂蛋白胆固醇之间的关联(P均≤0.0063)。最后一项分析是通过将来自快餐的能量百分比和糖尿病用药情况添加到协变量中进行的。鸡蛋/MPF/谷物模式与BMI之间以及鸡蛋/MPF/土豆/其他饮料与DBP和低密度脂蛋白胆固醇之间的关联消失了。
在解释饮食和健康危险因素的数据以及分析中使用的统计分析方法和协变量的选择时需要谨慎,因为这些研究通常用于生成假设。需要进一步的研究来更好地理解这些关系。