Helbling Saskia, Teki Sundeep, Callaghan Martina F, Sedley William, Mohammadi Siawoosh, Griffiths Timothy D, Weiskopf Nikolaus, Barnes Gareth R
Institute of Medical Psychology, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany.
Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK.
Neuroimage. 2015 Mar;108:377-85. doi: 10.1016/j.neuroimage.2014.12.030. Epub 2014 Dec 18.
We present an approach for combining high resolution MRI-based myelin mapping with functional information from electroencephalography (EEG) or magnetoencephalography (MEG). The main contribution to the primary currents detectable with EEG and MEG comes from ionic currents in the apical dendrites of cortical pyramidal cells, aligned perpendicularly to the local cortical surface. We provide evidence from an in-vivo experiment that the variation in MRI-based myeloarchitecture measures across the cortex predicts the variation of the current density over individuals and thus is of functional relevance. Equivalent current dipole locations and moments due to pitch onset evoked response fields (ERFs) were estimated by means of a variational Bayesian algorithm. The myeloarchitecture was estimated indirectly from individual high resolution quantitative multi-parameter maps (MPMs) acquired at 800μm isotropic resolution. Myelin estimates across cortical areas correlated positively with dipole magnitude. This correlation was spatially specific: regions of interest in the auditory cortex provided significantly better models than those covering whole hemispheres. Based on the MPM data we identified the auditory cortical area TE1.2 as the most likely origin of the pitch ERFs measured by MEG. We can now proceed to exploit the higher spatial resolution of quantitative MPMs to identify the cortical origin of M/EEG signals, inform M/EEG source reconstruction and explore structure-function relationships at a fine structural level in the living human brain.
我们提出了一种将基于高分辨率MRI的髓鞘图谱与来自脑电图(EEG)或脑磁图(MEG)的功能信息相结合的方法。EEG和MEG可检测到的初级电流的主要贡献来自皮质锥体细胞顶端树突中的离子电流,这些电流垂直于局部皮质表面排列。我们通过一项体内实验提供证据表明,整个皮质基于MRI的髓鞘结构测量的变化可预测个体间电流密度的变化,因此具有功能相关性。通过变分贝叶斯算法估计了由于音高起始诱发反应场(ERF)产生的等效电流偶极位置和矩。髓鞘结构是从以800μm各向同性分辨率获取的个体高分辨率定量多参数图(MPM)中间接估计出来的。跨皮质区域的髓鞘估计与偶极大小呈正相关。这种相关性具有空间特异性:听觉皮质中的感兴趣区域比覆盖整个半球的区域提供了显著更好的模型。基于MPM数据,我们将听觉皮质区域TE1.2确定为MEG测量的音高ERF最可能的起源。我们现在可以利用定量MPM更高的空间分辨率来确定M/EEG信号的皮质起源,为M/EEG源重建提供信息,并在活体人类大脑的精细结构水平上探索结构-功能关系。