Suppr超能文献

核小体结构中的模糊性和噪声。

Fuzziness and noise in nucleosomal architecture.

机构信息

Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08028 Barcelona, Spain, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain and Department of Biochemistry and Molecular Biology. University of Barcelona, 08028 Barcelona, Spain.

出版信息

Nucleic Acids Res. 2014 Apr;42(8):4934-46. doi: 10.1093/nar/gku165. Epub 2014 Feb 27.

Abstract

Nucleosome organization plays a key role in the regulation of gene expression. However, despite the striking advances in the accuracy of nucleosome maps, there are still severe discrepancies on individual nucleosome positioning and how this influences gene regulation. The variability among nucleosome maps, which precludes the fine analysis of nucleosome positioning, might emerge from diverse sources. We have carefully inspected the extrinsic factors that may induce diversity by the comparison of microccocal nuclease (MNase)-Seq derived nucleosome maps generated under distinct conditions. Furthermore, we have also explored the variation originated from intrinsic nucleosome dynamics by generating additional maps derived from cell cycle synchronized and asynchronous yeast cultures. Taken together, our study has enabled us to measure the effect of noise in nucleosome occupancy and positioning and provides insights into the underlying determinants. Furthermore, we present a systematic approach that may guide the standardization of MNase-Seq experiments in order to generate reproducible genome-wide nucleosome patterns.

摘要

核小体组织在基因表达调控中起着关键作用。然而,尽管核小体图谱的准确性有了显著提高,但在单个核小体定位以及这如何影响基因调控方面仍存在严重差异。核小体图谱的可变性排除了对核小体定位的精细分析,这种可变性可能源于多种来源。我们通过比较在不同条件下生成的微球菌核酸酶 (MNase)-Seq 衍生核小体图谱,仔细检查了可能导致多样性的外在因素。此外,我们还通过生成来自细胞周期同步和异步酵母培养物的额外图谱,探索了源自内在核小体动力学的变化。总之,我们的研究使我们能够测量核小体占有率和定位噪声的影响,并深入了解潜在的决定因素。此外,我们提出了一种系统的方法,可以指导 MNase-Seq 实验的标准化,以生成可重复的全基因组核小体模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d0/4005669/73038e532c97/gku165f1p.jpg

相似文献

1
Fuzziness and noise in nucleosomal architecture.
Nucleic Acids Res. 2014 Apr;42(8):4934-46. doi: 10.1093/nar/gku165. Epub 2014 Feb 27.
3
The effect of micrococcal nuclease digestion on nucleosome positioning data.
PLoS One. 2010 Dec 29;5(12):e15754. doi: 10.1371/journal.pone.0015754.
4
Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants.
Methods Mol Biol. 2018;1830:353-366. doi: 10.1007/978-1-4939-8657-6_21.
5
Chemical map-based prediction of nucleosome positioning using the Bioconductor package nuCpos.
BMC Bioinformatics. 2021 Jun 13;22(1):322. doi: 10.1186/s12859-021-04240-2.
6
Profiling Nucleosome Occupancy by MNase-seq: Experimental Protocol and Computational Analysis.
Methods Mol Biol. 2018;1675:167-181. doi: 10.1007/978-1-4939-7318-7_11.
7
Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq.
Methods Mol Biol. 2012;833:413-9. doi: 10.1007/978-1-61779-477-3_24.
8
A unified computational framework for modeling genome-wide nucleosome landscape.
Phys Biol. 2018 Sep 12;15(6):066011. doi: 10.1088/1478-3975/aadad2.
10
Absolute nucleosome occupancy map for the genome.
Genome Res. 2019 Dec;29(12):1996-2009. doi: 10.1101/gr.253419.119. Epub 2019 Nov 6.

引用本文的文献

1
An integrated machine-learning model to predict nucleosome architecture.
Nucleic Acids Res. 2024 Sep 23;52(17):10132-10143. doi: 10.1093/nar/gkae689.
2
The PCNA-Pol δ complex couples lagging strand DNA synthesis to parental histone transfer for epigenetic inheritance.
Sci Adv. 2024 Jun 7;10(23):eadn5175. doi: 10.1126/sciadv.adn5175. Epub 2024 Jun 5.
3
A study of strong nucleosomes in the human genome.
iScience. 2022 Jun 13;25(7):104593. doi: 10.1016/j.isci.2022.104593. eCollection 2022 Jul 15.
4
Deform-nu: A DNA Deformation Energy-Based Predictor for Nucleosome Positioning.
Front Cell Dev Biol. 2020 Dec 23;8:596341. doi: 10.3389/fcell.2020.596341. eCollection 2020.
5
Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin.
J Mol Biol. 2021 Mar 19;433(6):166720. doi: 10.1016/j.jmb.2020.11.019. Epub 2020 Nov 20.
6
Survey of the Arc Epigenetic Landscape in Normal Cognitive Aging.
Mol Neurobiol. 2020 Jun;57(6):2727-2740. doi: 10.1007/s12035-020-01915-4. Epub 2020 Apr 24.
7
Absolute nucleosome occupancy map for the genome.
Genome Res. 2019 Dec;29(12):1996-2009. doi: 10.1101/gr.253419.119. Epub 2019 Nov 6.
8
Nucleosome Dynamics: a new tool for the dynamic analysis of nucleosome positioning.
Nucleic Acids Res. 2019 Oct 10;47(18):9511-9523. doi: 10.1093/nar/gkz759.
10
Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription.
Mol Cell. 2018 Jun 21;70(6):1054-1066.e4. doi: 10.1016/j.molcel.2018.05.020.

本文引用的文献

1
Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations.
PLoS Comput Biol. 2013;9(11):e1003354. doi: 10.1371/journal.pcbi.1003354. Epub 2013 Nov 21.
3
Toward a unified physical model of nucleosome patterns flanking transcription start sites.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5719-24. doi: 10.1073/pnas.1214048110. Epub 2013 Mar 18.
4
Determinants of nucleosome positioning.
Nat Struct Mol Biol. 2013 Mar;20(3):267-73. doi: 10.1038/nsmb.2506.
5
Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells.
Cell Rep. 2012 Dec 27;2(6):1645-56. doi: 10.1016/j.celrep.2012.11.008. Epub 2012 Dec 13.
7
Genome-wide nucleosome specificity and directionality of chromatin remodelers.
Cell. 2012 Jun 22;149(7):1461-73. doi: 10.1016/j.cell.2012.04.036.
10
Nucleosomes and the accessibility problem.
Trends Genet. 2011 Dec;27(12):487-92. doi: 10.1016/j.tig.2011.09.001. Epub 2011 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验