Suppr超能文献

用于响应式神经接口的形状记忆聚合物基板实现的三维柔性电子器件。

Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces.

作者信息

Ware Taylor, Simon Dustin, Hearon Keith, Liu Clive, Shah Sagar, Reeder Jonathan, Khodaparast Navid, Kilgard Michael P, Maitland Duncan J, Rennaker Robert L, Voit Walter E

机构信息

Assistant Professor, Department of Materials Science and Engineering, The University of Texas at Dallas, Mailstop RL10, 800 West Campbell Rd., Richardson, TX 75080, USA.

Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.

出版信息

Macromol Mater Eng. 2012 Dec 1;297(12):1193-1202. doi: 10.1002/mame.201200241.

Abstract

Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic-abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol-ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated.

摘要

平面电子加工方法已使神经接口变得更加精确并能传递更多信息。然而,这种加工模式本质上是二维且刚性的。在生物-非生物界面产生的机械和几何不匹配会引发免疫反应,从而阻止有效刺激。在这项工作中,一种硫醇-烯/丙烯酸酯形状记忆聚合物被用于制造用于刺激电极的三维软化基板。该基板系统显示出能从600多兆帕软化至6兆帕。展示了一种缠绕在大鼠迷走神经上并驱动神经活动的神经袖套电极。

相似文献

1
Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces.
Macromol Mater Eng. 2012 Dec 1;297(12):1193-1202. doi: 10.1002/mame.201200241.
2
Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26614-23. doi: 10.1021/acsami.5b08139. Epub 2015 Nov 25.
3
Thiol-ene/acrylate substrates for softening intracortical electrodes.
J Biomed Mater Res B Appl Biomater. 2014 Jan;102(1):1-11. doi: 10.1002/jbmb.32946. Epub 2013 May 13.
4
A comparison of polymer substrates for photolithographic processing of flexible bioelectronics.
Biomed Microdevices. 2013 Dec;15(6):925-39. doi: 10.1007/s10544-013-9782-8.
5
Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording.
Sci Adv. 2019 Apr 19;5(4):eaaw1066. doi: 10.1126/sciadv.aaw1066. eCollection 2019 Apr.
6
Thiol-click chemistries for responsive neural interfaces.
Macromol Biosci. 2013 Dec;13(12):1640-7. doi: 10.1002/mabi.201300272. Epub 2013 Oct 1.
7
Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation.
ACS Nano. 2024 Jan 16;18(2):1702-1713. doi: 10.1021/acsnano.3c10028. Epub 2024 Jan 2.
9
Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation.
Sci Rep. 2018 Nov 6;8(1):16390. doi: 10.1038/s41598-018-34566-6.
10
Chronic softening spinal cord stimulation arrays.
J Neural Eng. 2018 Aug;15(4):045002. doi: 10.1088/1741-2552/aab90d. Epub 2018 Mar 23.

引用本文的文献

1
Mechanically-adaptive, resveratrol-eluting neural probes for improved intracortical recording performance and stability.
Npj Flex Electron. 2025;9(1):64. doi: 10.1038/s41528-025-00440-5. Epub 2025 Jul 9.
3
5
Mechanically adaptive and deployable intracortical probes enable long-term neural electrophysiological recordings.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2403380121. doi: 10.1073/pnas.2403380121. Epub 2024 Sep 27.
6
Highly-stable, injectable, conductive hydrogel for chronic neuromodulation.
Nat Commun. 2024 Sep 12;15(1):7993. doi: 10.1038/s41467-024-52418-y.
7
In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation.
Biomaterials. 2022 Oct;289:121784. doi: 10.1016/j.biomaterials.2022.121784. Epub 2022 Sep 2.
8
Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine.
Adv Mater. 2022 Mar;34(10):e2106787. doi: 10.1002/adma.202106787. Epub 2022 Jan 27.
9
Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics.
Adv Sci (Weinh). 2021 Jul;8(14):e2101233. doi: 10.1002/advs.202101233. Epub 2021 May 20.
10
4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation.
Acta Biomater. 2021 Mar 1;122:101-110. doi: 10.1016/j.actbio.2020.12.042. Epub 2020 Dec 21.

本文引用的文献

1
High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
J Neural Eng. 2012 Apr;9(2):026005. doi: 10.1088/1741-2560/9/2/026005. Epub 2012 Feb 13.
2
Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex.
Cereb Cortex. 2012 Oct;22(10):2365-74. doi: 10.1093/cercor/bhr316. Epub 2011 Nov 10.
3
Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.
Exp Neurol. 2012 Jan;233(1):342-9. doi: 10.1016/j.expneurol.2011.10.026. Epub 2011 Nov 4.
4
Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.
J Neural Eng. 2011 Dec;8(6):066011. doi: 10.1088/1741-2560/8/6/066011. Epub 2011 Nov 2.
5
In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes.
J Neural Eng. 2011 Aug;8(4):046010. doi: 10.1088/1741-2560/8/4/046010. Epub 2011 Jun 8.
6
Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.
J Appl Polym Sci. 2011 Jul;121(1):144-153. doi: 10.1002/app.33428.
7
Novel multi-sided, microelectrode arrays for implantable neural applications.
Biomed Microdevices. 2011 Jun;13(3):441-51. doi: 10.1007/s10544-011-9512-z.
8
Implant size and fixation mode strongly influence tissue reactions in the CNS.
PLoS One. 2011 Jan 26;6(1):e16267. doi: 10.1371/journal.pone.0016267.
9
Reversing pathological neural activity using targeted plasticity.
Nature. 2011 Feb 3;470(7332):101-4. doi: 10.1038/nature09656. Epub 2011 Jan 12.
10
Highly adhesive phenolic compounds as interfacial primers for bone fracture fixations.
ACS Appl Mater Interfaces. 2010 Mar;2(3):654-7. doi: 10.1021/am100002s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验