Suppr超能文献

基于谱图分块低秩惩罚的稀疏视角谱 CT 重建。

Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty.

出版信息

IEEE Trans Med Imaging. 2015 Mar;34(3):748-60. doi: 10.1109/TMI.2014.2380993. Epub 2014 Dec 18.

Abstract

Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost.

摘要

光谱 CT 是一种很有前途的技术,具有提高病灶检测、组织特征化和物质分解的潜力。在本文中,我们对基于 kVp 切换的光谱 CT 感兴趣,该技术在旋转机架时交替使用不同的 kVp X 射线传输。这种系统可以在不增加辐射剂量的情况下获取多个 X 射线能量传输。然而,对于每个光谱测量,仅生成稀疏视图;并且光谱本身的数量有限。为了解决这些限制,我们提出了一种基于光谱补丁的惩罚最大似然方法,该方法利用了在光谱图像中相同位置收集的补丁的自相似性。主要优点是,每个补丁内的物质数量相对较少,允许我们使用对强度变化不太敏感的低秩惩罚,同时保留边缘方向。在我们的优化公式中,成本函数由 X 射线传输的泊松对数似然和非凸基于补丁的低秩惩罚组成。由于原始成本函数难以直接最小化,我们提出了一种使用可分离二次近似和凹凸过程算法的优化方法,用于对数似然和惩罚项,这导致交替最小化,提供了计算优势,因为每个子问题都可以独立求解。我们使用基于稀疏视图测量的 kVp 切换光谱 CT 进行了计算机模拟和真实实验,并将提出的方法与传统算法进行了比较。我们证实,该方法在定性和定量上都提高了光谱图像的质量。此外,我们的 GPU 实现大大降低了计算成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验