State Key Laboratory of Robotics and System, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
Research Center for Advanced Science and Technology, the University of Tokyo and PRESTO/JST, Tokyo 153-8904, Japan.
Sensors (Basel). 2017 Jun 13;17(6):1370. doi: 10.3390/s17061370.
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, < 0.05) and ISVC (13.38% ± 2.62%, = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).
基于模式识别的肌电控制方法在长期使用中会受到各种干扰因素的影响,导致性能下降。本文提出了一种具有低计算成本的自适应学习方法,以减轻在无监督自适应学习场景中的影响。我们提出了一种粒子自适应分类器 (PAC),通过构建粒子自适应学习策略和通用增量最小二乘支持向量分类器 (LS-SVC)。我们在无监督和监督自适应学习场景中的长期模式识别任务中比较了 PAC 性能与增量支持向量分类器 (ISVC) 和非自适应 SVC (NSVC)。通过在模拟和真实的长期肌电数据上验证分类性能,比较了重新训练时间成本和识别准确性。真实的长期肌电数据的分类结果表明,与 NSVC (9.03% ± 2.23%, < 0.05) 和 ISVC (13.38% ± 2.62%, = 0.001)相比,PAC 显著降低了无监督自适应学习场景中的性能下降,并且与 ISVC 相比,减少了重新训练时间成本 (每更新周期 2 毫秒与每更新周期 50 毫秒)。