Suppr超能文献

基于卷积神经网络的用于神经假体控制的自重新校准表面肌电图模式识别

Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network.

作者信息

Zhai Xiaolong, Jelfs Beth, Chan Rosa H M, Tin Chung

机构信息

Department of Mechanical and Biomedical Engineering, City University of Hong KongHong Kong, Hong Kong.

Department of Electronic Engineering, City University of Hong KongHong Kong, Hong Kong.

出版信息

Front Neurosci. 2017 Jul 11;11:379. doi: 10.3389/fnins.2017.00379. eCollection 2017.

Abstract

Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

摘要

基于表面肌电图(sEMG)模式识别的手部运动分类是上肢神经假体控制的一种很有前景的方法。然而,在实际操作中,sEMG的非平稳特性对日常性能的维持提出了挑战。在本研究中,我们提出了一种自校准分类器,它可以自动更新,以随时间保持稳定的性能,而无需用户重新训练。我们的分类器基于卷积神经网络(CNN),使用短潜伏期降维sEMG频谱图作为输入。预训练的分类器使用最近测试会话预测结果的校正版本进行定期重新校准。我们提出的系统使用包含40名健全人和11名截肢者手部运动数据的NinaPro数据库进行了评估。相对于未重新校准的分类器,我们的系统在五个测试会话中的平均分类准确率能够提高约10.18%(健全人,50种运动类型)和约2.99%(截肢者,10种运动类型)。与支持向量机(SVM)分类器相比,我们基于CNN的系统始终表现出更高的绝对性能、更大的改进以及更高效的训练。这些结果表明,所提出的系统可以成为促进截肢者在实际应用中长期使用假肢的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0595/5504564/27564aac80dd/fnins-11-00379-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验