Zheng He, Kim Jaekuk, Liew Mathew, Yan John K, Herrera Oscar, Bok Jin Woo, Kelleher Neil L, Keller Nancy P, Wang Yun
Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
Curr Biol. 2015 Jan 5;25(1):29-37. doi: 10.1016/j.cub.2014.11.018. Epub 2014 Dec 18.
Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes.
Here, we report that these "toxins" can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in coculture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome, including the thioredoxin, glutathione, and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA.
This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi.
丝状真菌和细菌在自然环境及多种临床环境中形成混合物种生物膜。它们分泌大量具有氧化还原活性的小分子次级代谢产物,传统上这些产物被视为抑制竞争微生物生长的毒素。
在此,我们报告这些“毒素”可作为种间信号,通过氧化应激调节影响丝状真菌的发育。具体而言,在共培养生物膜中,铜绿假单胞菌产生的吩嗪类代谢产物以不同方式调节烟曲霉的发育,随着吩嗪浓度梯度降低,烟曲霉从微弱的营养生长转变为诱导产生无性孢子(分生孢子形成)。烟曲霉的形态转变与吩嗪自由基的产生以及由吩嗪氧化还原循环伴随产生的活性氧(ROS)相关。吩嗪诱导分生孢子形成的信号在遗传模型构巢曲霉中是保守的,并且由NapA介导,NapA是一种与AP-1样bZIP转录因子同源的蛋白,它对于人类、酵母和丝状真菌应对氧化应激至关重要。表达谱分析表明,吩嗪处理可诱导NapA依赖的全局氧化应激代谢组反应,包括硫氧还蛋白、谷胱甘肽和NADPH氧化酶系统。另一种微生物氧化还原活性次级代谢产物——胶毒素对构巢曲霉分生孢子形成的诱导也需要NapA。
这项工作突出表明微生物氧化还原代谢产物是丝状真菌孢子形成的关键信号,这些信号通过进化上保守的真核生物应激反应途径进行传递。它为涉及细菌和丝状真菌的环境及临床生物膜中的种间信号传递提供了基础。