Suppr超能文献

毒素检测与抗性方面的趋同进化为保守的细菌-真菌相互作用提供了证据。

Convergent evolution in toxin detection and resistance provides evidence for conserved bacterial-fungal interactions.

作者信息

Dolan Stephen K, Duong Ashley T, Whiteley Marvin

机构信息

School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30310.

Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2304382121. doi: 10.1073/pnas.2304382121. Epub 2024 Aug 1.

Abstract

Microbes rarely exist in isolation and instead form complex polymicrobial communities. As a result, microbes have developed intricate offensive and defensive strategies that enhance their fitness in these complex communities. Thus, identifying and understanding the molecular mechanisms controlling polymicrobial interactions is critical for understanding the function of microbial communities. In this study, we show that the gram-negative opportunistic human pathogen , which frequently causes infection alongside a plethora of other microbes including fungi, encodes a genetic network which can detect and defend against gliotoxin, a potent, disulfide-containing antimicrobial produced by the ubiquitous filamentous fungus . We show that gliotoxin exposure disrupts zinc homeostasis, leading to transcriptional activation of a gene encoding a previously uncharacterized dithiol oxidase (herein named as DnoP), which detoxifies gliotoxin and structurally related toxins. Despite sharing little homology to the gliotoxin resistance protein (GliT), the enzymatic mechanism of DnoP from appears to be identical that used by A. fumigatus. Thus, DnoP and its transcriptional induction by low zinc represent a rare example of both convergent evolution of toxin defense and environmental cue sensing across kingdoms. Collectively, these data provide compelling evidence that has evolved to survive exposure to an disulfide-containing toxin in the natural environment.

摘要

微生物很少单独存在,而是形成复杂的多微生物群落。因此,微生物已经发展出复杂的进攻和防御策略,以提高它们在这些复杂群落中的适应性。因此,识别和理解控制多微生物相互作用的分子机制对于理解微生物群落的功能至关重要。在本研究中,我们表明革兰氏阴性机会性人类病原体,它经常与包括真菌在内的大量其他微生物一起引起感染,编码一个遗传网络,该网络可以检测并抵御由无处不在的丝状真菌产生的强效含二硫键的抗菌物质——gliotoxin。我们表明,gliotoxin暴露会破坏锌稳态,导致编码一种以前未表征的二硫醇氧化酶(在此命名为DnoP)的基因转录激活,该酶可解毒gliotoxin和结构相关毒素。尽管与gliotoxin抗性蛋白(GliT)几乎没有同源性,但来自的DnoP的酶促机制似乎与烟曲霉使用的机制相同。因此,DnoP及其由低锌诱导的转录代表了跨王国毒素防御和环境信号感知趋同进化的罕见例子。总体而言,这些数据提供了令人信服的证据,表明已经进化到能够在自然环境中接触含二硫键毒素的情况下存活下来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/125f/11317636/ac4641d7b2bf/pnas.2304382121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验