Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
mBio. 2018 Aug 21;9(4):e01130-18. doi: 10.1128/mBio.01130-18.
Asexual sporulation is fundamental to the ecology and lifestyle of filamentous fungi and can facilitate both plant and human infection. In , the production of asexual spores is primarily governed by the BrlA→AbaA→WetA regulatory cascade. The final step in this cascade is controlled by the WetA protein and governs not only the morphological differentiation of spores but also the production and deposition of diverse metabolites into spores. While WetA is conserved across the genus , the structure and degree of conservation of the gene regulatory network (GRN) remain largely unknown. We carried out comparative transcriptome analyses of comparisons between null mutant and wild-type asexual spores in three representative species spanning the diversity of the genus : , , and We discovered that WetA regulates asexual sporulation in all three species via a negative-feedback loop that represses BrlA, the cascade's first step. Furthermore, data from chromatin immunoprecipitation sequencing (ChIP-seq) experiments in asexual spores suggest that WetA is a DNA-binding protein that interacts with a novel regulatory motif. Several global regulators known to bridge spore production and the production of secondary metabolites show species-specific regulatory patterns in our data. These results suggest that the BrlA→AbaA→WetA cascade's regulatory role in cellular and chemical asexual spore development is functionally conserved but that the -associated GRN has diverged during evolution. The formation of resilient spores is a key factor contributing to the survival and fitness of many microorganisms, including fungi. In the fungal genus , spore formation is controlled by a complex gene regulatory network that also impacts a variety of other processes, including secondary metabolism. To gain mechanistic insights into how fungal spore formation is controlled across , we dissected the gene regulatory network downstream of a major regulator of spore maturation (WetA) in three species that span the diversity of the genus: the genetic model , the human pathogen , and the aflatoxin producer Our data show that WetA regulates asexual sporulation in all three species via a negative-feedback loop and likely binds a novel regulatory element that we term the WetA response element (WRE). These results shed light on how gene regulatory networks in microorganisms control important biological processes and evolve across diverse species.
无性孢子形成对于丝状真菌的生态学和生活方式至关重要,并且可以促进植物和人类的感染。在丝状真菌中,无性孢子的产生主要由 BrlA→AbaA→WetA 调控级联控制。该级联的最后一步由 WetA 蛋白控制,不仅控制孢子的形态分化,还控制各种代谢物向孢子的产生和沉积。虽然 WetA 在属内是保守的,但基因调控网络 (GRN) 的结构和保守程度在很大程度上仍然未知。我们对跨越属多样性的三个代表种:,,和 的无性孢子的 null 突变体和野生型之间的比较转录组进行了分析。我们发现,WetA 通过负反馈回路调节所有三种物种的无性孢子形成,该负反馈回路抑制级联的第一步 BrlA。此外,在 无性孢子中的染色质免疫沉淀测序 (ChIP-seq) 实验数据表明,WetA 是一种与新型调控基序相互作用的 DNA 结合蛋白。我们的数据中显示,几种已知在孢子产生和次生代谢产物产生之间起桥梁作用的全局调节剂表现出种特异性的调节模式。这些结果表明,BrlA→AbaA→WetA 级联在细胞和化学无性孢子发育中的调控作用在功能上是保守的,但与相关的 GRN 在进化过程中已经分化。有韧性的孢子的形成是许多微生物(包括真菌)生存和适应的关键因素。在真菌属中,孢子形成受复杂的基因调控网络控制,该网络还影响包括次生代谢在内的多种其他过程。为了深入了解真菌孢子形成是如何在属内控制的,我们在跨越属多样性的三个种中剖析了主要孢子成熟调节剂(WetA)下游的基因调控网络:遗传模型 ,人类病原体 ,和黄曲霉毒素生产者 。我们的数据表明,WetA 通过负反馈回路调节所有三种物种的无性孢子形成,并且可能结合了我们称之为 WetA 反应元件 (WRE) 的新型调控元件。这些结果阐明了微生物中的基因调控网络如何控制重要的生物学过程,并在不同物种中进化。