Hustedt Nicole, Seeber Andrew, Sack Ragna, Tsai-Pflugfelder Monika, Bhullar Bhupinder, Vlaming Hanneke, van Leeuwen Fred, Guénolé Aude, van Attikum Haico, Srivas Rohith, Ideker Trey, Shimada Kenji, Gasser Susan M
Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
Mol Cell. 2015 Jan 22;57(2):273-89. doi: 10.1016/j.molcel.2014.11.016. Epub 2014 Dec 18.
Mec1-Ddc2 (ATR-ATRIP) controls the DNA damage checkpoint and shows differential cell-cycle regulation in yeast. To find regulators of Mec1-Ddc2, we exploited a mec1 mutant that retains catalytic activity in G2 and recruitment to stalled replication forks, but which is compromised for the intra-S phase checkpoint. Two screens, one for spontaneous survivors and an E-MAP screen for synthetic growth effects, identified loss of PP4 phosphatase, pph3Δ and psy2Δ, as the strongest suppressors of mec1-100 lethality on HU. Restored Rad53 phosphorylation accounts for part, but not all, of the pph3Δ-mediated survival. Phosphoproteomic analysis confirmed that 94% of the mec1-100-compromised targets on HU are PP4 regulated, including a phosphoacceptor site within Mec1 itself, mutation of which confers damage sensitivity. Physical interaction between Pph3 and Mec1, mediated by cofactors Psy2 and Ddc2, is shown biochemically and through FRET in subnuclear repair foci. This establishes a physical and functional Mec1-PP4 unit for regulating the checkpoint response.
Mec1-Ddc2(ATR-ATRIP)控制DNA损伤检查点,并在酵母中表现出不同的细胞周期调控。为了寻找Mec1-Ddc2的调节因子,我们利用了一种mec1突变体,该突变体在G2期保留催化活性并能募集到停滞的复制叉,但在S期内检查点存在缺陷。两项筛选,一项针对自发存活者,另一项针对合成生长效应的E-MAP筛选,确定PP4磷酸酶(pph3Δ和psy2Δ)的缺失是mec1-100在HU上致死性的最强抑制因子。恢复的Rad53磷酸化部分(但不是全部)解释了pph3Δ介导的存活。磷酸化蛋白质组分析证实,HU上94%的mec1-100受损靶点受PP4调控,包括Mec1自身内的一个磷酸化位点,该位点的突变会导致损伤敏感性。Pph3和Mec1之间的物理相互作用由辅因子Psy2和Ddc2介导,通过生物化学方法以及在亚核修复位点的荧光共振能量转移(FRET)得以证明。这确立了一个用于调节检查点反应的物理和功能上的Mec1-PP4单元。