Caldwell Charles C, Yao Jia, Brinton Roberta Diaz
Clinical and Experimental Therapeutics Program, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.
Neurotherapeutics. 2015 Jan;12(1):66-80. doi: 10.1007/s13311-014-0324-8.
Alzheimer's disease (AD) has a complex and progressive neurodegenerative phenotype, with hypometabolism and impaired mitochondrial bioenergetics among the earliest pathogenic events. Bioenergetic deficits are well documented in preclinical models of mammalian aging and AD, emerge early in the prodromal phase of AD, and in those at risk for AD. This review discusses the importance of early therapeutic intervention during the prodromal stage that precedes irreversible degeneration in AD. Mechanisms of action for current mitochondrial and bioenergetic therapeutics for AD broadly fall into the following categories: 1) glucose metabolism and substrate supply; 2) mitochondrial enhancers to potentiate energy production; 3) antioxidants to scavenge reactive oxygen species and reduce oxidative damage; 4) candidates that target apoptotic and mitophagy pathways to either remove damaged mitochondria or prevent neuronal death. Thus far, mitochondrial therapeutic strategies have shown promise at the preclinical stage but have had little-to-no success in clinical trials. Lessons learned from preclinical and clinical therapeutic studies are discussed. Understanding the bioenergetic adaptations that occur during aging and AD led us to focus on a systems biology approach that targets the bioenergetic system rather than a single component of this system. Bioenergetic system-level therapeutics personalized to bioenergetic phenotype would target bioenergetic deficits across the prodromal and clinical stages to prevent and delay progression of AD.
阿尔茨海默病(AD)具有复杂且进行性的神经退行性表型,其中代谢减退和线粒体生物能量学受损是最早的致病事件之一。生物能量缺陷在哺乳动物衰老和AD的临床前模型中已有充分记录,在AD的前驱期早期以及有AD风险的个体中就已出现。本综述讨论了在AD不可逆性退变之前的前驱阶段进行早期治疗干预的重要性。目前用于AD的线粒体和生物能量治疗药物的作用机制大致可分为以下几类:1)葡萄糖代谢和底物供应;2)增强线粒体功能以提高能量产生;3)抗氧化剂以清除活性氧并减少氧化损伤;4)靶向凋亡和线粒体自噬途径的候选药物,以清除受损线粒体或防止神经元死亡。到目前为止,线粒体治疗策略在临床前阶段已显示出前景,但在临床试验中几乎没有成功。本文讨论了从临床前和临床治疗研究中吸取的经验教训。对衰老和AD过程中发生的生物能量适应的理解使我们专注于一种针对生物能量系统而非该系统单个组成部分的系统生物学方法。针对生物能量表型进行个性化的生物能量系统水平治疗将针对前驱期和临床阶段的生物能量缺陷,以预防和延缓AD的进展。