Onyango Isaac G, Dennis Jameel, Khan Shaharyah M
Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA.
Aging Dis. 2016 Mar 15;7(2):201-14. doi: 10.14336/AD.2015.1007. eCollection 2016 Mar.
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far.
阿尔茨海默病(AD)是一种使人衰弱的神经退行性疾病,其特征是胆碱能神经元逐渐丧失,导致严重的行为、运动和认知障碍。这是一个紧迫的公共卫生问题,目前尚无有效治疗方法。现有疗法仅能缓解症状,无法预防、阻止或逆转病理过程。虽然这种多因素神经退行性疾病的分子基础仍然是一个重大挑战,但线粒体功能障碍似乎是该疾病发病机制中的一个关键因素。因此,在AD前驱期针对线粒体功能障碍进行干预,以减缓或预防神经退行性过程并恢复神经元功能非常重要。在这篇综述中,我们讨论了当前用于AD的线粒体和生物能量疗法的作用机制及转化潜力,包括:增强线粒体功能以提高能量产生;抗氧化剂清除活性氧并减少氧化损伤;葡萄糖代谢和底物供应;以及针对凋亡和线粒体自噬途径以清除受损线粒体的候选药物。虽然线粒体治疗策略在临床前阶段已显示出前景,但迄今为止在临床试验中进展甚微。