Ellwood Michael J, Hutchins David A, Lohan Maeve C, Milne Angela, Nasemann Philipp, Nodder Scott D, Sander Sylvia G, Strzepek Robert, Wilhelm Steven W, Boyd Philip W
Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia;
Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089;
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):E15-20. doi: 10.1073/pnas.1421576112. Epub 2014 Dec 22.
The supply and bioavailability of dissolved iron sets the magnitude of surface productivity for ∼ 40% of the global ocean. The redox state, organic complexation, and phase (dissolved versus particulate) of iron are key determinants of iron bioavailability in the marine realm, although the mechanisms facilitating exchange between iron species (inorganic and organic) and phases are poorly constrained. Here we use the isotope fingerprint of dissolved and particulate iron to reveal distinct isotopic signatures for biological uptake of iron during a GEOTRACES process study focused on a temperate spring phytoplankton bloom in subtropical waters. At the onset of the bloom, dissolved iron within the mixed layer was isotopically light relative to particulate iron. The isotopically light dissolved iron pool likely results from the reduction of particulate iron via photochemical and (to a lesser extent) biologically mediated reduction processes. As the bloom develops, dissolved iron within the surface mixed layer becomes isotopically heavy, reflecting the dominance of biological processing of iron as it is removed from solution, while scavenging appears to play a minor role. As stable isotopes have shown for major elements like nitrogen, iron isotopes offer a new window into our understanding of the biogeochemical cycling of iron, thereby allowing us to disentangle a suite of concurrent biotic and abiotic transformations of this key biolimiting element.
溶解态铁的供应和生物可利用性决定了全球约40%海洋区域的表层生产力水平。铁的氧化还原状态、有机络合作用以及相态(溶解态与颗粒态)是海洋环境中铁生物可利用性的关键决定因素,尽管促进铁物种(无机态和有机态)与相态之间交换的机制仍不太明确。在此,我们利用溶解态和颗粒态铁的同位素指纹,在一项地球化学追踪过程研究中揭示了铁生物吸收的独特同位素特征,该研究聚焦于亚热带水域温带春季浮游植物水华。在水华开始时,混合层中的溶解态铁相对于颗粒态铁在同位素上较轻。同位素较轻的溶解态铁库可能是由于颗粒态铁通过光化学和(在较小程度上)生物介导的还原过程而产生的。随着水华的发展,表层混合层中的溶解态铁在同位素上变重,这反映出铁从溶液中被去除时生物过程占主导地位,而清除作用似乎只起次要作用。正如稳定同位素已在氮等主要元素上所显示的那样,铁同位素为我们理解铁的生物地球化学循环提供了一个新窗口,从而使我们能够厘清这一关键生物限制元素的一系列同时发生的生物和非生物转化过程。