Suppr超能文献

来自全球海洋模型的铁同位素循环限制

Constraints on the Cycling of Iron Isotopes From a Global Ocean Model.

作者信息

König D, Conway T M, Ellwood M J, Homoky W B, Tagliabue A

机构信息

School of Environmental Sciences University of Liverpool Liverpool UK.

College of Marine Science University of South Florida St Petersburg FL USA.

出版信息

Global Biogeochem Cycles. 2021 Sep;35(9):e2021GB006968. doi: 10.1029/2021GB006968. Epub 2021 Sep 16.

Abstract

Although iron (Fe) is a key regulator of primary production over much of the ocean, many components of the marine iron cycle are poorly constrained, which undermines our understanding of climate change impacts. In recent years, a growing number of studies (often part of GEOTRACES) have used Fe isotopic signatures (δFe) to disentangle different aspects of the marine Fe cycle. Characteristic δFe endmembers of external sources and assumed isotopic fractionation during biological Fe uptake or recycling have been used to estimate relative source contributions and investigate internal transformations, respectively. However, different external sources and fractionation processes often overlap and act simultaneously, complicating the interpretation of oceanic Fe isotope observations. Here we investigate the driving forces behind the marine dissolved Fe isotopic signature (δFe) distribution by incorporating Fe isotopes into the global ocean biogeochemical model PISCES. We find that distinct external source endmembers acting alongside fractionation during organic complexation and phytoplankton uptake are required to reproduce δFe observations along GEOTRACES transects. δFe distributions through the water column result from regional imbalances of remineralization and abiotic removal processes. They modify δFe directly and transfer surface ocean signals to the interior with opposing effects. Although attributing crustal compositions to sedimentary Fe sources in regions with low organic carbon fluxes improves our isotope model, δFe signals from hydrothermal or sediment sources cannot be reproduced accurately by simply adjusting δFe endmember values. This highlights that additional processes must govern the exchange and/or speciation of Fe supplied by these sources to the ocean.

摘要

尽管铁(Fe)是海洋大部分区域初级生产的关键调节因子,但海洋铁循环的许多组成部分仍受到很大限制,这削弱了我们对气候变化影响的理解。近年来,越来越多的研究(通常是“地球化学追踪”计划的一部分)利用铁同位素特征(δFe)来厘清海洋铁循环的不同方面。外部来源的特征δFe端元以及生物吸收或循环利用铁过程中假定的同位素分馏,已分别用于估算相对来源贡献和研究内部转化。然而,不同的外部来源和分馏过程往往相互重叠且同时起作用,使得对海洋铁同位素观测结果的解释变得复杂。在此,我们通过将铁同位素纳入全球海洋生物地球化学模型PISCES,研究海洋溶解态铁同位素特征(δFe)分布背后的驱动力。我们发现,需要不同的外部来源端元以及有机络合和浮游植物吸收过程中的分馏作用共同发挥作用,才能重现沿“地球化学追踪”断面的δFe观测结果。水柱中的δFe分布是由再矿化和非生物去除过程的区域不平衡导致的。它们直接改变δFe,并将表层海洋信号传递到海洋内部,产生相反的影响。尽管在有机碳通量较低的区域将地壳成分归因于沉积铁源可改进我们的同位素模型,但仅通过调整δFe端元值无法准确重现来自热液或沉积物源的δFe信号。这突出表明,必须有其他过程来控制这些来源向海洋供应的铁的交换和/或形态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38ab/9285799/5157e6325544/GBC-35-0-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验