Suppr超能文献

溶剂驱动力确保植物隐花色素中持久且分离良好的自由基对的快速形成。

Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome.

机构信息

Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology , Kaiserstrasse 12, 76131 Karlsruhe, Germany.

出版信息

J Am Chem Soc. 2015 Jan 28;137(3):1147-56. doi: 10.1021/ja510550g. Epub 2015 Jan 15.

Abstract

The photoreceptor protein cryptochrome is thought to host, upon light absorption, a radical pair that is sensitive to very weak magnetic fields, endowing migratory birds with a magnetic compass sense. The molecular mechanism that leads to formation of a stabilized, magnetic field sensitive radical pair has despite various theoretical and experimental efforts not been unambiguously identified yet. We challenge this unambiguity through a unique quantum mechanical molecular dynamics approach where we perform electron transfer dynamics simulations taking into account the motion of the protein upon the electron transfer. This approach allows us to follow the time evolution of the electron transfer in an unbiased fashion and to reveal the molecular driving force that ensures fast electron transfer in cryptochrome guaranteeing formation of a persistent radical pair suitable for magnetoreception. We argue that this unraveled molecular mechanism is a general principle inherent to all proteins of the cryptochrome/photolyase family and that cryptochromes are, therefore, tailored to potentially function as efficient chemical magnetoreceptors.

摘要

感光蛋白隐色素被认为在吸收光后会形成一对自由基,这对自由基对非常弱的磁场敏感,从而使候鸟具有磁罗盘感。尽管已经进行了各种理论和实验研究,但导致形成稳定的、对磁场敏感的自由基对的分子机制仍未被明确确定。我们通过一种独特的量子力学分子动力学方法来挑战这种不明确性,该方法通过考虑蛋白质在电子转移过程中的运动来进行电子转移动力学模拟。这种方法使我们能够以无偏的方式跟踪电子转移的时间演化,并揭示分子驱动力,该驱动力确保了隐色素中快速的电子转移,从而形成适合磁感受的持久自由基对。我们认为,这种揭示的分子机制是隐色素/光解酶家族所有蛋白质所固有的一般原则,因此,隐色素被设计为潜在的高效化学磁受体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验