Suppr超能文献

一种作为快速鉴定候选生物标志物方法的乳腺癌细胞微阵列(CMA)。

A breast cancer cell microarray (CMA) as a rapid method to characterize candidate biomarkers.

作者信息

Wu Xinyan, Zahari Muhammad S, Renuse Santosh, Jacob Harrys K C, Sakamuri Sruthi, Singal Mukul, Gabrielson Edward, Sukumar Saraswati, Pandey Akhilesh

机构信息

a McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry ; Johns Hopkins University School of Medicine ; Baltimore , MD USA.

出版信息

Cancer Biol Ther. 2014;15(12):1593-9. doi: 10.4161/15384047.2014.961886.

Abstract

Tissue microarrays (TMAs) have become an invaluable tool in cancer research to evaluate expression and subcellular localization of proteins in cells and tissues. As the catalogs of candidate biomarkers and therapeutic targets become more extensive, there is a need to characterize and validate these targets and biomarkers in cell lines as a primary biological system in research laboratories. Thus, cell microarrays (CMAs) are useful as a high-throughput screening tool. Here, we constructed a CMA containing 32 publicly available immortalized breast cell lines with the goal of creating a method to rapidly screen for antigens of interest in breast cancer research in a relatively easy, rapid and cost-effective manner. As proof of concept, we performed immunocytochemical staining of the HER2 receptor, as the status of this protein is relevant to breast cancer and has previously been reported for these cell lines. We observed a complete concordance of our staining with the published status of HER2 in these cell lines. In addition, we examined the expression of CD44, epithelial markers EpCAM and E-cadherin and tyrosine phosphoproteins. The labeling of these proteins correlates with the known biology of the cell lines. Our results demonstrate the utility of our method to screen for potential biomarkers and therapeutic targets in breast cancer and we suggest that CMAs be used as a general approach in breast cancer research.

摘要

组织微阵列(TMAs)已成为癌症研究中一种极具价值的工具,用于评估细胞和组织中蛋白质的表达及亚细胞定位。随着候选生物标志物和治疗靶点的目录日益丰富,有必要在作为研究实验室主要生物系统的细胞系中对这些靶点和生物标志物进行表征和验证。因此,细胞微阵列(CMAs)作为一种高通量筛选工具很有用。在此,我们构建了一个包含32种公开可用的永生化乳腺癌细胞系的细胞微阵列,目的是以相对简便、快速且经济高效的方式创建一种在乳腺癌研究中快速筛选感兴趣抗原的方法。作为概念验证,我们对HER2受体进行了免疫细胞化学染色,因为该蛋白的状态与乳腺癌相关,且此前已针对这些细胞系进行过报道。我们观察到我们的染色结果与这些细胞系中HER2的已发表状态完全一致。此外,我们检测了CD44、上皮标志物EpCAM和E-钙黏蛋白以及酪氨酸磷酸化蛋白的表达。这些蛋白质的标记与细胞系的已知生物学特性相关。我们的结果证明了我们的方法在筛选乳腺癌潜在生物标志物和治疗靶点方面的实用性,并且我们建议将细胞微阵列用作乳腺癌研究中的一种通用方法。

相似文献

引用本文的文献

5
Progress in the clinical detection of heterogeneity in breast cancer.乳腺癌异质性临床检测的进展
Cancer Med. 2016 Dec;5(12):3475-3488. doi: 10.1002/cam4.943. Epub 2016 Oct 24.
6
Living Cell Microarrays: An Overview of Concepts.活细胞微阵列:概念概述
Microarrays (Basel). 2016 May 26;5(2):11. doi: 10.3390/microarrays5020011.

本文引用的文献

5
Understanding the dual nature of CD44 in breast cancer progression.理解 CD44 在乳腺癌进展中的双重特性。
Mol Cancer Res. 2011 Dec;9(12):1573-86. doi: 10.1158/1541-7786.MCR-11-0156. Epub 2011 Oct 4.
9
Tyrosine phosphorylation: thirty years and counting.酪氨酸磷酸化:三十年仍在继续。
Curr Opin Cell Biol. 2009 Apr;21(2):140-6. doi: 10.1016/j.ceb.2009.01.028. Epub 2009 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验