Suppr超能文献

用于多环境试验的具有随机截距的基因组预测核模型。

Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.

作者信息

Cuevas Jaime, Granato Italo, Fritsche-Neto Roberto, Montesinos-Lopez Osval A, Burgueño Juan, Bandeira E Sousa Massaine, Crossa José

机构信息

Universidad de Quintana Roo, Chetumal, Quintana Roo, México.

Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.

出版信息

G3 (Bethesda). 2018 Mar 28;8(4):1347-1365. doi: 10.1534/g3.117.300454.

Abstract

In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines ([Formula: see text]) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy.

摘要

在本研究中,我们比较了无基因型与环境互作效应的主要基因型效应模型(MM)、多环境单方差基因型与环境偏差模型(MDs)以及多环境特定环境方差基因型与环境偏差模型(MDe)的预测准确性,其中品系的随机遗传效应通过标记(或系谱)进行建模。为了进一步对品系的遗传残差进行建模,我们纳入了品系的随机截距([公式:见正文])并生成了另外三个模型。这6个模型中的每一个都采用线性核方法(基因组最佳线性无偏预测器,GB)和高斯核(GK)方法进行拟合。我们将这12种模型 - 方法组合与另外两个具有非结构化方差协方差的多环境基因型与环境互作模型(MUC)使用GB和GK核(4种模型 - 方法)进行比较。因此,我们在两个环境间具有正表型相关性的玉米数据集以及两个具有复杂基因型与环境互作(包括一些环境间负表型相关性和接近零的表型相关性)的小麦数据集上,比较了总共16种模型 - 方法组合的基因组辅助预测准确性。两个模型(带有品系随机截距和GK方法的MDs和MDE)计算效率高,并且在两个玉米数据集中给出了较高的预测准确性。对于更复杂的基因型与环境互作的小麦数据集,与具有非结构化方差协方差但基因组预测准确性较低的基因型与环境互作多环境模型相比,包含带有GK方法的品系随机截距的基因型与环境互作、MDs和MDe的模型 - 方法组合在计算时间上有显著节省。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc80/5873923/648f9bd072ec/1347f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验