Suppr超能文献

鸟类的磁感应:射频场的影响。

Magnetoreception in birds: the effect of radio-frequency fields.

作者信息

Wiltschko Roswitha, Thalau Peter, Gehring Dennis, Nießner Christine, Ritz Thorsten, Wiltschko Wolfgang

机构信息

FB Biowissenschaften, J.W.Goethe-Universität Frankfurt, Max von Laue Straße 13, D-60438 Frankfurt am Main, Germany

FB Biowissenschaften, J.W.Goethe-Universität Frankfurt, Max von Laue Straße 13, D-60438 Frankfurt am Main, Germany.

出版信息

J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.1103.

Abstract

The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field.

摘要

鸟类磁罗盘可能基于自由基对过程,仅在局部场强周围狭窄的功能窗口内起作用,隐花色素1a最有可能是其受体分子。已表明兆赫兹范围内的射频场会干扰鸟类的定向,但这种干扰的性质仍不清楚。在一项免疫组织学研究中,我们测试了射频场是否会干扰隐花色素的光还原,但情况似乎并非如此。在行为研究中,鸟类无法像它们能够适应正常功能范围之外的静磁场那样适应射频场:无论是在7.0兆赫兹、480纳特斯拉的场中进行2小时预暴露,还是在1.315兆赫兹、15纳特斯拉的场中进行7小时预暴露,都不能使鸟类恢复其定向能力。这种无法适应射频场的情况表明,这些场直接干扰了磁感受的主要过程,因此只要它们存在,就会使鸟类罗盘失效。然而,它们不会产生持久的不良后效应,因为鸟类在暴露于射频场后立即就能在当地地磁场中定向。

相似文献

2
Avian magnetic compass can be tuned to anomalously low magnetic intensities.鸟类的磁罗盘可以调谐到异常低的磁场强度。
Proc Biol Sci. 2013 May 29;280(1763):20130853. doi: 10.1098/rspb.2013.0853. Print 2013 Jul 22.

引用本文的文献

1
Learned magnetic map cues and two mechanisms of magnetoreception in turtles.海龟习得的磁图线索与两种磁感应机制
Nature. 2025 Feb;638(8052):1015-1022. doi: 10.1038/s41586-024-08554-y. Epub 2025 Feb 12.
7
Why is it so difficult to study magnetic compass orientation in murine rodents?为什么研究鼠类啮齿动物的磁罗盘定向如此困难?
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):197-212. doi: 10.1007/s00359-021-01532-z. Epub 2022 Jan 30.
8
Investigating the impact of weak geomagnetic fluctuations on pigeon races.研究弱地磁波动对信鸽比赛的影响。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):177-184. doi: 10.1007/s00359-021-01534-x. Epub 2022 Jan 28.
9
Environmental sources of radio frequency noise: potential impacts on magnetoreception.射频噪声的环境来源:对磁感受的潜在影响。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):83-95. doi: 10.1007/s00359-021-01516-z. Epub 2022 Jan 22.

本文引用的文献

5
Avian magnetic compass can be tuned to anomalously low magnetic intensities.鸟类的磁罗盘可以调谐到异常低的磁场强度。
Proc Biol Sci. 2013 May 29;280(1763):20130853. doi: 10.1098/rspb.2013.0853. Print 2013 Jul 22.
7
A new type of radical-pair-based model for magnetoreception.一种基于自由基对的新型磁受体模型。
Biophys J. 2012 Mar 7;102(5):961-8. doi: 10.1016/j.bpj.2012.01.007. Epub 2012 Mar 6.
9
The cryptochromes: blue light photoreceptors in plants and animals.隐花色素:动植物中的蓝光光感受器。
Annu Rev Plant Biol. 2011;62:335-64. doi: 10.1146/annurev-arplant-042110-103759.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验