Starke Stefan, Jost Isabelle, Rossbach Oliver, Schneider Tim, Schreiner Silke, Hung Lee-Hsueh, Bindereif Albrecht
Institute of Biochemistry, University of Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
Institute of Biochemistry, University of Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany.
Cell Rep. 2015 Jan 6;10(1):103-11. doi: 10.1016/j.celrep.2014.12.002. Epub 2014 Dec 24.
Circular RNAs (circRNAs), an abundant class of noncoding RNAs in higher eukaryotes, are generated from pre-mRNAs by circularization of adjacent exons. Using a set of 15 circRNAs, we demonstrated their cell-type-specific expression and circular versus linear processing in mammalian cells. Northern blot analysis combined with RNase H cleavage conclusively proved a circular configuration for two examples, LPAR1 and HIPK3. To address the circularization mechanism, we analyzed the sequence requirements using minigenes derived from natural circRNAs. Both canonical splice sites are required for circularization, although they vary in flexibility and potential use of cryptic sites. Surprisingly, we found that no specific circRNA exon sequence is necessary and that potential flanking intron structures can modulate circularization efficiency. In combination with splice inhibitor assays, our results argue that the canonical spliceosomal machinery functions in circRNA biogenesis, constituting an alternative splicing mode.
环状RNA(circRNAs)是高等真核生物中一类丰富的非编码RNA,由前体信使核糖核酸(pre-mRNAs)通过相邻外显子环化产生。我们使用一组15种环状RNA,证明了它们在哺乳动物细胞中的细胞类型特异性表达以及环状与线性加工过程。Northern印迹分析结合核糖核酸酶H切割最终证实了LPAR1和HIPK3这两个例子的环状结构。为了探究环化机制,我们使用源自天然环状RNA的微型基因分析了序列要求。环化需要两个典型的剪接位点,尽管它们在灵活性和潜在的隐蔽位点使用方面有所不同。令人惊讶的是,我们发现不需要特定的环状RNA外显子序列,并且潜在的侧翼内含子结构可以调节环化效率。结合剪接抑制剂分析,我们的结果表明典型的剪接体机制在环状RNA生物合成中起作用,构成了一种选择性剪接模式。