Gaitas Angelo, Hower Robert W
Kytaro, Inc., 11200 SW 8th Street, MARC 430, Miami, Florida 33199, United States ; Florida International University, Electrical and Computer Engineering, 11200 SW 8th Street, MARC 430, Miami, Florida 33199, United States.
Kytaro, Inc., 11200 SW 8th Street, MARC 430, Miami, Florida 33199, United States.
J Micro Nanolithogr MEMS MOEMS. 2014 Sep 15;13(3). doi: 10.1117/1.JMM.13.3.030501.
We describe a method for fabricating an aperture on a fluidic cantilever device using SU-8 as a structural material. The device can ultimately be used for patch clamping, microinjections, fluidic delivery, fluidic deposition, and micromaterial removal. In the first generation of this device, the initial aperture diameter is 10 m and is fabricated on a silicon-on-insulator (SOI) wafer that is structurally used to define the aperture. The aperture can be reduced in size through mask design. This self-aligned process allows for patterning on the sharp tip projecting out of the fluidic plane on the cantilever and is batch fabricated, reducing the cost and time for manufacture. The initial mask, SOI device layer thickness, and the width of the base of the tip define the size of the aperture. The SU-8 micromachined cantilever includes an electrode and a force sensing mechanism. The cantilever can be easily integrated with an atomic force microscope or an optical microscope.
我们描述了一种使用SU-8作为结构材料在流体悬臂装置上制造孔径的方法。该装置最终可用于膜片钳、微量注射、流体输送、流体沉积和微材料去除。在该装置的第一代中,初始孔径为10微米,是在绝缘体上硅(SOI)晶圆上制造的,该晶圆在结构上用于定义孔径。孔径大小可通过掩膜设计减小。这种自对准工艺允许在悬臂上突出于流体平面的尖锐尖端上进行图案化,并且是批量制造的,从而降低了制造成本和时间。初始掩膜、SOI器件层厚度以及尖端底部的宽度决定了孔径大小。SU-8微加工悬臂包括一个电极和一个力传感机制。该悬臂可以很容易地与原子力显微镜或光学显微镜集成。