Suppr超能文献

用于一只手的真实和想象的拇指和食指运动的脑电图模式分类器的开发。

Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand.

机构信息

System Analysis and Control department, Saint-Petersburg State Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251, Russia.

System Analysis and Control department, Saint-Petersburg State Polytechnic University, Politekhnicheskaya 29, St. Petersburg 195251, Russia.

出版信息

Artif Intell Med. 2015 Feb;63(2):107-17. doi: 10.1016/j.artmed.2014.12.006. Epub 2014 Dec 18.

Abstract

OBJECTIVE

This study aimed to find effective approaches to electroencephalographic (EEG) signal analysis and resolve problems of real and imaginary finger movement pattern recognition and categorization for one hand.

METHODS AND MATERIALS

Eight right-handed subjects (mean age 32.8 [SD=3.3] years) participated in the study, and activity from sensorimotor zones (central and contralateral to the movements/imagery) was recorded for EEG data analysis. In our study, we explored the decoding accuracy of EEG signals using real and imagined finger (thumb/index of one hand) movements using artificial neural network (ANN) and support vector machine (SVM) algorithms for future brain-computer interface (BCI) applications.

RESULTS

The decoding accuracy of the SVM based on a Gaussian radial basis function linearly increased with each trial accumulation (mean: 45%, max: 62% with 20 trial summarizations), and the decoding accuracy of the ANN was higher when single-trial discrimination was applied (mean: 38%, max: 42%). The chosen approaches of EEG signal discrimination demonstrated differential sensitivity to data accumulation. Additionally, the time responses varied across subjects and inside sessions but did not influence the discrimination accuracy of the algorithms.

CONCLUSION

This work supports the feasibility of the approach, which is presumed suitable for one-hand finger movement (real and imaginary) decoding. These results could be applied in the elaboration of multiclass BCI systems.

摘要

目的

本研究旨在寻找有效的脑电图(EEG)信号分析方法,并解决单手真实和想象手指运动模式识别和分类的问题。

方法和材料

8 名右利手受试者(平均年龄 32.8 [SD=3.3] 岁)参与了研究,并记录了感觉运动区(运动/想象的对侧和对侧)的活动,以进行 EEG 数据分析。在我们的研究中,我们探索了使用人工神经网络(ANN)和支持向量机(SVM)算法对 EEG 信号进行解码的准确性,用于未来的脑机接口(BCI)应用。

结果

基于高斯径向基函数的 SVM 的解码准确性随着每次试验的积累而线性增加(平均:45%,最大:62%,20 次总结),而当应用单次试验判别时,ANN 的解码准确性更高(平均:38%,最大:42%)。所选的 EEG 信号判别方法表现出对数据积累的不同敏感性。此外,时间反应在受试者之间和内部会话中变化,但不影响算法的判别准确性。

结论

这项工作支持了该方法的可行性,该方法被认为适合单手手指运动(真实和想象)的解码。这些结果可应用于多类 BCI 系统的制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验