School of Information Engineering, Huzhou University, Huzhou 313000, China.
Zhejiang Province Key Laboratory of Smart Management & Application of Modern Agricultural Resources, Huzhou University, Huzhou 313000, China.
Comput Math Methods Med. 2020 Jul 20;2020:1981728. doi: 10.1155/2020/1981728. eCollection 2020.
EEG pattern recognition is an important part of motor imagery- (MI-) based brain computer interface (BCI) system. Traditional EEG pattern recognition algorithm usually includes two steps, namely, feature extraction and feature classification. In feature extraction, common spatial pattern (CSP) is one of the most frequently used algorithms. However, in order to extract the optimal CSP features, prior knowledge and complex parameter adjustment are often required. Convolutional neural network (CNN) is one of the most popular deep learning models at present. Within CNN, feature learning and pattern classification are carried out simultaneously during the procedure of iterative updating of network parameters; thus, it can remove the complicated manual feature engineering. In this paper, we propose a novel deep learning methodology which can be used for spatial-frequency feature learning and classification of motor imagery EEG. Specifically, a multilayer CNN model is designed according to the spatial-frequency characteristics of MI EEG signals. An experimental study is carried out on two MI EEG datasets (BCI competition III dataset IVa and a self-collected right index finger MI dataset) to validate the effectiveness of our algorithm in comparison with several closely related competing methods. Superior classification performance indicates that our proposed method is a promising pattern recognition algorithm for MI-based BCI system.
脑电信号模式识别是基于运动想象(MI)的脑机接口(BCI)系统的重要组成部分。传统的脑电信号模式识别算法通常包括两个步骤,即特征提取和特征分类。在特征提取中,常用的算法之一是共空间模式(CSP)。然而,为了提取最优的 CSP 特征,通常需要先验知识和复杂的参数调整。卷积神经网络(CNN)是目前最流行的深度学习模型之一。在 CNN 中,在网络参数的迭代更新过程中同时进行特征学习和模式分类,从而可以省去复杂的人工特征工程。在本文中,我们提出了一种新的深度学习方法,可用于运动想象脑电的空间-频率特征学习和分类。具体来说,根据 MI EEG 信号的空间-频率特征设计了一个多层 CNN 模型。在两个 MI EEG 数据集(BCI 竞赛 III 数据集 IVa 和一个自我采集的右食指 MI 数据集)上进行了实验研究,以验证与几个密切相关的竞争方法相比,我们的算法的有效性。优越的分类性能表明,我们提出的方法是一种很有前途的基于 MI 的 BCI 系统的模式识别算法。