School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China.
Nano Lett. 2015 Jan 14;15(1):616-22. doi: 10.1021/nl504108m. Epub 2015 Jan 2.
If achieved, magnetization reversal purely with an electric field has the potential to revolutionize the spintronic devices that currently utilize power-dissipating currents. However, all existing proposals involve the use of a magnetic field. Here we use phase-field simulations to study the piezoelectric and magnetoelectric responses in a three-dimensional multiferroic nanostructure consisting of a perpendicularly magnetized nanomagnet with an in-plane long axis and a juxtaposed ferroelectric nanoisland. For the first time, we demonstrate a full reversal of perpendicular magnetization via successive precession and damping, driven purely by a perpendicular electric-field pulse of certain pulse duration across the nanoferroelectric. We discuss the materials selection and size dependence of both nanoferroelctrics and nanomagnets for experimental verification. These results offer new inspiration to the design of spintronic devices that simultaneously possess high density, high thermal stability, and high reliability.
如果能够实现,仅通过电场实现磁化反转有可能彻底改变目前利用耗散电流的自旋电子器件。然而,所有现有的方案都涉及磁场的使用。在这里,我们使用相场模拟来研究由具有垂直磁化的纳米磁体和并列的铁电纳米岛组成的三维多铁纳米结构中的压电和磁电响应。我们首次通过在纳米铁电体上施加一定持续时间的垂直电场脉冲,证明了通过连续进动和阻尼完全反转垂直磁化。我们讨论了纳米铁电体和纳米磁体的材料选择和尺寸依赖性,以进行实验验证。这些结果为同时具有高密度、高热稳定性和高可靠性的自旋电子器件的设计提供了新的启示。