Wei Jie, Cai Bin, Zhang Lin, Fu Bingmei M
Department of Computer Science, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA,
Ann Biomed Eng. 2015 Aug;43(8):1803-14. doi: 10.1007/s10439-014-1238-7. Epub 2014 Dec 31.
To target tumor hematogenous metastasis and to understand how leukocytes cross the microvessel wall to perform immune functions, it is necessary to elucidate the adhesion location and transmigration pathway of tumor cells and leukocytes on/across the endothelial cells forming the microvessel wall. We developed an algorithm to classify and quantify cell adhesion locations from photomicrographs taken from the experiments of tumor cell/leukocyte adhesion in individual microvessels. The first step is to identify the microvessel by a novel gravity-field dynamic programming (DP) procedure. Next, an anisotropic image smoothing suppresses noises without unduly mitigating crucial visual features. After an adaptive thresholding process further tackles uneven lighting conditions during the imaging process, a series of local mathematical morphological operators and eigenanalysis identify tumor cells or leukocytes. Finally, a novel double component labeling procedure categorizes the cell adhesion locations. This algorithm has generated consistently encouraging performances on photomicrographs obtained from in vivo experiments for tumor cell and leukocyte adhesion locations on the endothelium forming the microvessel wall. Compared with human experts, this algorithm used 1/500-1/200 of the time without having the errors due to human subjectivity. Our automatic classification and quantification method provides a reliable and cost effective approach for biomedical image processing.
为了靶向肿瘤血行转移并了解白细胞如何穿过微血管壁来执行免疫功能,有必要阐明肿瘤细胞和白细胞在构成微血管壁的内皮细胞上/穿过内皮细胞的黏附位置和迁移途径。我们开发了一种算法,用于从单个微血管中肿瘤细胞/白细胞黏附实验所拍摄的显微照片中对细胞黏附位置进行分类和量化。第一步是通过一种新颖的重力场动态规划(DP)程序识别微血管。接下来,各向异性图像平滑处理可抑制噪声,同时不会过度削弱关键视觉特征。在自适应阈值处理进一步解决成像过程中光照不均匀的问题之后,一系列局部数学形态学算子和特征分析可识别肿瘤细胞或白细胞。最后,一种新颖的双组分标记程序对细胞黏附位置进行分类。该算法在从体内实验获得的显微照片上,对于肿瘤细胞和白细胞在构成微血管壁的内皮细胞上的黏附位置,始终产生令人鼓舞的性能表现。与人类专家相比,该算法使用的时间仅为其1/500 - 1/200,且不存在因人为主观性导致的误差。我们的自动分类和量化方法为生物医学图像处理提供了一种可靠且具有成本效益的方法。