Suppr超能文献

一种基于锥形束 CT 投影的膈肌运动跟踪的约束线性回归优化算法。

A constrained linear regression optimization algorithm for diaphragm motion tracking with cone beam CT projections.

机构信息

Department of Computer Science, City College of New York, New York, NY 10031, USA.

Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY 10029, USA.

出版信息

Phys Med. 2018 Feb;46:7-15. doi: 10.1016/j.ejmp.2018.01.005. Epub 2018 Jan 11.

Abstract

PURPOSE

We presented a feasibility study to extract the diaphragm motion from the inferior contrast cone beam computed tomography (CBCT) projection images using a constrained linear regression optimization algorithm.

METHODS

The shape of the diaphragm was fitted by a parabolic function which was initialized by five manually placed points on the diaphragm contour of a pre-selected projection. A constrained linear regression model by exploiting the spatial, algebraic, and temporal constraints of the diaphragm, approximated by a parabola, was employed to estimate the parameters. The algorithm was assessed by a fluoroscopic movie acquired at anterior-posterior (AP) fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients using the Varian 21iX Clinac. The automatic tracing by the proposed algorithm and manual tracking were compared in both space and frequency domains for the algorithm evaluations.

RESULTS

The error between the results estimated by the proposed algorithm and those by manual tracking for the AP fluoroscopic movie was 0.54 mm with standard deviation (SD) of 0.45 mm. For the detected projections the average error was 0.79 mm with SD of 0.64 mm for all six enrolled patients and the maximum deviation was 2.5 mm. The mean sub-millimeter accuracy outcome exhibits the feasibility of the proposed constrained linear regression approach to track the diaphragm motion on rotational fluoroscopic images.

CONCLUSION

The new algorithm will provide a potential solution to rendering diaphragm motion and possibly aiding the tumor target tracking in radiation therapy of thoracic/abdominal cancer patients.

摘要

目的

我们提出了一种从下对比度锥形束计算机断层扫描(CBCT)投影图像中提取膈肌运动的可行性研究,使用约束线性回归优化算法。

方法

通过在预选投影的膈肌轮廓上手动放置五个点来拟合膈肌的形状,然后使用约束线性回归模型来估计参数,该模型利用膈肌的空间、代数和时间约束,由抛物线近似。该算法通过在前后(AP)固定方向和千伏 CBCT 投影图像集上使用瓦里安 21iX Clinac 对四个肺部和两个肝脏患者进行了评估。通过在空间和频域中比较自动跟踪和手动跟踪的算法评估,对算法进行了比较。

结果

对于 AP 透视电影,通过提出的算法和手动跟踪估计的结果之间的误差为 0.54mm,标准差(SD)为 0.45mm。对于检测到的投影,对于所有 6 名入组患者,平均误差为 0.79mm,标准差为 0.64mm,最大偏差为 2.5mm。亚毫米精度的平均结果表明,所提出的约束线性回归方法在旋转透视图像上跟踪膈肌运动是可行的。

结论

新算法将为呈现膈肌运动并可能辅助胸/腹部癌症患者放射治疗中的肿瘤靶区跟踪提供潜在解决方案。

相似文献

1
A constrained linear regression optimization algorithm for diaphragm motion tracking with cone beam CT projections.
Phys Med. 2018 Feb;46:7-15. doi: 10.1016/j.ejmp.2018.01.005. Epub 2018 Jan 11.
2
Diaphragm motion quantification in megavoltage cone-beam CT projection images.
Med Phys. 2010 May;37(5):2312-20. doi: 10.1118/1.3402184.
3
Real-time direct diaphragm tracking using kV imaging on a standard linear accelerator.
Med Phys. 2019 Oct;46(10):4481-4489. doi: 10.1002/mp.13738. Epub 2019 Aug 13.
4
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
Med Phys. 2013 Oct;40(10):101912. doi: 10.1118/1.4821099.
5
A new method of diaphragm apex motion detection from 2D projection images of mega-voltage cone beam CT.
Phys Med Biol. 2013 Feb 7;58(3):715-33. doi: 10.1088/0031-9155/58/3/715. Epub 2013 Jan 15.
7
Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.
Med Phys. 2018 Jan;45(1):167-177. doi: 10.1002/mp.12671. Epub 2017 Dec 11.
8
Reconstruction of a high-quality volumetric image and a respiratory motion model from patient CBCT projections.
Med Phys. 2019 Aug;46(8):3627-3639. doi: 10.1002/mp.13595. Epub 2019 Jun 17.
9
Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
Phys Med Biol. 2015 Dec 7;60(23):9157-83. doi: 10.1088/0031-9155/60/23/9157. Epub 2015 Nov 12.

引用本文的文献

1
Automatic prediction model for online diaphragm motion tracking based on optical surface monitoring by machine learning.
Quant Imaging Med Surg. 2023 Apr 1;13(4):2065-2080. doi: 10.21037/qims-22-242. Epub 2022 Jul 28.

本文引用的文献

1
Lung diaphragm tracking in CBCT images using spatio-temporal MRF.
Comput Med Imaging Graph. 2016 Oct;53:9-18. doi: 10.1016/j.compmedimag.2016.07.001. Epub 2016 Jul 11.
2
Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.
Phys Med Biol. 2016 Apr 21;61(8):3109-26. doi: 10.1088/0031-9155/61/8/3109. Epub 2016 Mar 23.
3
Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy.
Phys Med Biol. 2015 Dec 21;60(24):9437-54. doi: 10.1088/0031-9155/60/24/9437. Epub 2015 Nov 19.
4
A Feasibility Study of Tumor Motion Estimate With Regional Deformable Registration Method for 4-Dimensional Radiation Therapy of Lung Cancer.
Technol Cancer Res Treat. 2016 Oct;15(5):NP8-NP16. doi: 10.1177/1533034615600569. Epub 2015 Aug 20.
5
Markerless tracking of small lung tumors for stereotactic radiotherapy.
Med Phys. 2015 Apr;42(4):1640-52. doi: 10.1118/1.4914401.
6
Automatic Classification and Quantification of Cell Adhesion Locations on the Endothelium.
Ann Biomed Eng. 2015 Aug;43(8):1803-14. doi: 10.1007/s10439-014-1238-7. Epub 2014 Dec 31.
7
Is diaphragm motion a good surrogate for liver tumor motion?
Int J Radiat Oncol Biol Phys. 2014 Nov 15;90(4):952-8. doi: 10.1016/j.ijrobp.2014.07.028. Epub 2014 Sep 12.
8
2D/4D marker-free tumor tracking using 4D CBCT as the reference image.
Phys Med Biol. 2014 May 7;59(9):2219-33. doi: 10.1088/0031-9155/59/9/2219. Epub 2014 Apr 8.
9
Tracking lung tumors in orthogonal X-rays.
Comput Math Methods Med. 2013;2013:650463. doi: 10.1155/2013/650463. Epub 2013 Aug 6.
10
Extracting respiratory signals from thoracic cone beam CT projections.
Phys Med Biol. 2013 Mar 7;58(5):1447-64. doi: 10.1088/0031-9155/58/5/1447. Epub 2013 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验