Suppr超能文献

短跑的能量消耗以及代谢功率在创造最佳成绩中的作用。

The energy cost of sprint running and the role of metabolic power in setting top performances.

作者信息

di Prampero Pietro E, Botter Alberto, Osgnach Cristian

机构信息

Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy,

出版信息

Eur J Appl Physiol. 2015 Mar;115(3):451-69. doi: 10.1007/s00421-014-3086-4. Epub 2014 Dec 31.

Abstract

PURPOSE

To estimate the energetics and biomechanics of accelerated/decelerated running on flat terrain based on its biomechanical similarity to constant speed running up/down an 'equivalent slope' dictated by the forward acceleration (a f).

METHODS

Time course of a f allows one to estimate: (1) energy cost of sprint running (C sr), from the known energy cost of uphill/downhill running, and (2) instantaneous (specific) mechanical accelerating power (P sp = a f × speed).

RESULTS

In medium-level sprinters (MLS), C sr and metabolic power requirement (P met = C sr × speed) at the onset of a 100-m dash attain ≈50 J kg(-1) m(-1), as compared to ≈4 for running at constant speed, and ≈90 W kg(-1). For Bolt's current 100-m world record (9.58 s) the corresponding values attain ≈105 J kg(-1) m(-1) and ≈200 W kg(-1). This approach, as applied by Osgnach et al. (Med Sci Sports Exerc 42:170-178, 2010) to data obtained by video-analysis during soccer games, has been implemented in portable GPS devices (GPEXE), thus yielding P met throughout the match. Actual O₂ consumed, estimated from P met assuming a monoexponential VO₂ response (Patent Pending, TV2014A000074), was close to that determined by portable metabolic carts. Peak P sp (W kg(-1)) was 17.5 and 19.6 for MLS and elite soccer players, and 30 for Bolt. The ratio of horizontal to overall ground reaction force (per kg body mass) was ≈20 % larger, and its angle of application in respect to the horizontal ≈10° smaller, for Bolt, as compared to MLS. Finally, we estimated that, on a 10 % down-sloping track Bolt could cover 100 m in 8.2 s.

CONCLUSIONS

The above approach can yield useful information on the bioenergetics and biomechanics of accelerated/decelerated running.

摘要

目的

基于加速/减速跑与在由向前加速度(af)决定的“等效坡度”上匀速上坡/下坡跑的生物力学相似性,估算在平坦地形上加速/减速跑的能量学和生物力学。

方法

af的时间进程可用于估算:(1)短跑的能量消耗(Csr),根据已知的上坡/下坡跑的能量消耗来估算;(2)瞬时(特定)机械加速功率(Psp = af×速度)。

结果

在中级短跑运动员(MLS)中,100米短跑起跑时的Csr和代谢功率需求(Pmet = Csr×速度)达到约50 J·kg⁻¹·m⁻¹,而匀速跑时约为4,约为90 W·kg⁻¹。对于博尔特目前的100米世界纪录(9.58秒),相应的值达到约105 J·kg⁻¹·m⁻¹和约200 W·kg⁻¹。这种方法,如奥斯尼亚赫等人(《运动医学与科学》42:170 - 178,2010年)应用于足球比赛视频分析所获得的数据那样,已在便携式GPS设备(GPEXE)中实现,从而得出整个比赛中的Pmet。根据假设单指数VO₂反应的Pmet估算的实际耗氧量(专利申请中,TV2014A000074)与便携式代谢推车测定的结果相近。MLS和精英足球运动员的峰值Psp(W·kg⁻¹)分别为17.5和19.6,博尔特为30。与MLS相比,博尔特的水平与总地面反作用力(每千克体重)之比约大20%,其相对于水平方向的作用角度约小10°。最后,我们估计,在10%下坡的跑道上,博尔特可以在8.2秒内跑完100米。

结论

上述方法可为加速/减速跑的生物能量学和生物力学提供有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验