Suppr超能文献

复制蛋白A(RPA)的高亲和力DNA结合结构域指导SMARCAL1依赖性复制叉重塑。

High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

作者信息

Bhat Kamakoti P, Bétous Rémy, Cortez David

机构信息

From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.

From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

出版信息

J Biol Chem. 2015 Feb 13;290(7):4110-7. doi: 10.1074/jbc.M114.627083. Epub 2014 Dec 31.

Abstract

SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity.

摘要

SMARCAL1催化复制叉重塑以维持基因组稳定性。它通过与复制蛋白A(RPA)相互作用被招募到复制叉,RPA是真核细胞中主要的单链DNA结合蛋白。除了指导其定位外,RPA还在一些叉状底物上激活SMARCAL1,但在其他底物上抑制它,从而赋予SMARCAL1叉重塑反应底物特异性。我们研究了RPA调节SMARCAL1的机制。我们的结果表明,虽然SMARCAL1与RPA之间的相互作用对SMARCAL1激活至关重要,但RPA上相互作用表面的位置并非如此。与直觉相反,靠近叉连接处的RPA DNA结合域(DBD)A和DBD - B的高亲和力DNA结合使SMARCAL1更容易重塑叉,这需要去除RPA。我们还发现RPA DBD - C和DBD - D对SMARCAL1调节不是必需的。因此,叉处高亲和力RPA DBD的方向决定了SMARCAL1底物特异性。

相似文献

1
High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.
J Biol Chem. 2015 Feb 13;290(7):4110-7. doi: 10.1074/jbc.M114.627083. Epub 2014 Dec 31.
2
SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability.
PLoS Biol. 2024 Mar 19;22(3):e3002552. doi: 10.1371/journal.pbio.3002552. eCollection 2024 Mar.
4
Identification and characterization of SMARCAL1 protein complexes.
PLoS One. 2013 May 9;8(5):e63149. doi: 10.1371/journal.pone.0063149. Print 2013.
5
Identification of SMARCAL1 as a component of the DNA damage response.
J Biol Chem. 2009 Dec 18;284(51):35951-61. doi: 10.1074/jbc.M109.048330.
6
The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
J Biol Chem. 2018 Jun 1;293(22):8484-8494. doi: 10.1074/jbc.RA118.002905. Epub 2018 Apr 11.
7
Substrate-selective repair and restart of replication forks by DNA translocases.
Cell Rep. 2013 Jun 27;3(6):1958-69. doi: 10.1016/j.celrep.2013.05.002. Epub 2013 Jun 6.

引用本文的文献

3
Heterozygous variant as a novel genetic cause of telomere biology disorders.
Genes Dev. 2024 Sep 19;38(15-16):755-771. doi: 10.1101/gad.352032.124.
4
Mechanisms and regulation of replication fork reversal.
DNA Repair (Amst). 2024 Sep;141:103731. doi: 10.1016/j.dnarep.2024.103731. Epub 2024 Jul 22.
5
SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability.
PLoS Biol. 2024 Mar 19;22(3):e3002552. doi: 10.1371/journal.pbio.3002552. eCollection 2024 Mar.
6
Advances in DNA damage response inhibitors in colorectal cancer therapy.
Acta Biochim Biophys Sin (Shanghai). 2024 Jan 25;56(1):15-22. doi: 10.3724/abbs.2023278.
7
The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork.
Int J Mol Sci. 2023 Jun 22;24(13):10488. doi: 10.3390/ijms241310488.
8
Actin nucleators safeguard replication forks by limiting nascent strand degradation.
Nucleic Acids Res. 2023 Jul 7;51(12):6337-6354. doi: 10.1093/nar/gkad369.
10
RAD51 bypasses the CMG helicase to promote replication fork reversal.
Science. 2023 Apr 28;380(6643):382-387. doi: 10.1126/science.add7328. Epub 2023 Apr 27.

本文引用的文献

2
Interplay of DNA damage and cell cycle signaling at the level of human replication protein A.
DNA Repair (Amst). 2014 Sep;21:12-23. doi: 10.1016/j.dnarep.2014.05.005. Epub 2014 Jun 13.
3
Diffusion of human replication protein A along single-stranded DNA.
J Mol Biol. 2014 Sep 23;426(19):3246-3261. doi: 10.1016/j.jmb.2014.07.014. Epub 2014 Jul 22.
5
Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging.
PLoS One. 2014 Feb 3;9(2):e87922. doi: 10.1371/journal.pone.0087922. eCollection 2014.
6
Causes and consequences of replication stress.
Nat Cell Biol. 2014 Jan;16(1):2-9. doi: 10.1038/ncb2897.
9
ATR phosphorylates SMARCAL1 to prevent replication fork collapse.
Genes Dev. 2013 Jul 15;27(14):1610-23. doi: 10.1101/gad.214080.113.
10
Substrate-selective repair and restart of replication forks by DNA translocases.
Cell Rep. 2013 Jun 27;3(6):1958-69. doi: 10.1016/j.celrep.2013.05.002. Epub 2013 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验