Suppr超能文献

双生病毒AL2和L2蛋白分析揭示了一种新型的AL2沉默抑制活性。

Analysis of geminivirus AL2 and L2 proteins reveals a novel AL2 silencing suppressor activity.

作者信息

Jackel Jamie N, Buchmann R Cody, Singhal Udit, Bisaro David M

机构信息

Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA.

Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA

出版信息

J Virol. 2015 Mar;89(6):3176-87. doi: 10.1128/JVI.02625-14. Epub 2014 Dec 31.

Abstract

UNLABELLED

Both posttranscriptional and transcriptional gene silencing (PTGS and TGS, respectively) participate in defense against the DNA-containing geminiviruses. As a countermeasure, members of the genus Begomovirus (e.g., Cabbage leaf curl virus) encode an AL2 protein that is both a transcriptional activator and a silencing suppressor. The related L2 protein of Beet curly top virus (genus Curtovirus) lacks transcription activation activity. Previous studies showed that both AL2 and L2 suppress silencing by a mechanism that correlates with adenosine kinase (ADK) inhibition, while AL2 in addition activates transcription of cellular genes that negatively regulate silencing pathways. The goal of this study was to clarify the general means by which these viral proteins inhibit various aspects of silencing. We confirmed that AL2 inhibits systemic silencing spread by a mechanism that requires transcription activation activity. Surprisingly, we also found that reversal of PTGS and TGS by ADK inactivation depended on whether experiments were conducted in vegetative or reproductive Nicotiana benthamiana plants (i.e., before or after the vegetative-to-reproductive transition). While AL2 was able to reverse silencing in both vegetative and reproductive plants, L2 and ADK inhibition were effective only in vegetative plants. This suggests that silencing maintenance mechanisms can change during development or in response to stress. Remarkably, we also observed that AL2 lacking its transcription activation domain could reverse TGS in reproductive plants, revealing a third, previously unsuspected AL2 suppression mechanism that depends on neither ADK inactivation nor transcription activation.

IMPORTANCE

RNA silencing in plants is a multivalent antiviral defense, and viruses respond by elaborating multiple and sometimes multifunctional proteins that inhibit various aspects of silencing. The studies described here add an additional layer of complexity to this interplay. By examining geminivirus AL2 and L2 suppressor activities, we show that L2 is unable to suppress silencing in Nicotiana benthamiana plants that have undergone the vegetative-to-reproductive transition. As L2 was previously shown to be effective in mature Arabidopsis plants, these results illustrate that silencing mechanisms can change during development or in response to stress in ways that may be species specific. The AL2 and L2 proteins are known to share a suppression mechanism that correlates with the ability of both proteins to inhibit ADK, while AL2 in addition can inhibit silencing by transcriptionally activating cellular genes. Here, we also provide evidence for a third AL2 suppression mechanism that depends on neither transcription activation nor ADK inactivation. In addition to revealing the remarkable versatility of AL2, this work highlights the utility of viral suppressors as probes for the analysis of silencing pathways.

摘要

未标记

转录后基因沉默和转录基因沉默(分别为PTGS和TGS)均参与对含DNA的双生病毒的防御。作为一种应对措施,菜豆金色花叶病毒属的成员(例如,卷心菜曲叶病毒)编码一种AL2蛋白,它既是转录激活因子又是沉默抑制因子。甜菜曲顶病毒(曲顶病毒属)的相关L2蛋白缺乏转录激活活性。先前的研究表明,AL2和L2均通过与腺苷激酶(ADK)抑制相关的机制抑制沉默,而AL2还能激活负调控沉默途径的细胞基因的转录。本研究的目的是阐明这些病毒蛋白抑制沉默各个方面的一般方式。我们证实,AL2通过一种需要转录激活活性的机制抑制系统沉默的传播。令人惊讶的是,我们还发现,ADK失活对PTGS和TGS的逆转取决于实验是在营养生长还是生殖生长的本氏烟草植株中进行(即营养生长向生殖生长转变之前或之后)。虽然AL2能够在营养生长和生殖生长的植株中逆转沉默,但L2和ADK抑制仅在营养生长的植株中有效。这表明沉默维持机制在发育过程中或对胁迫的反应中可能会发生变化。值得注意的是,我们还观察到,缺乏转录激活结构域 的AL2能够逆转生殖生长植株中的TGS,揭示了第三种先前未被怀疑的AL2抑制机制,该机制既不依赖于ADK失活也不依赖于转录激活。

重要性

植物中的RNA沉默是一种多价抗病毒防御,病毒通过精心制造多种有时具有多功能的蛋白来抑制沉默的各个方面进行应对。这里描述的研究为这种相互作用增加了另一层复杂性。通过研究双生病毒AL2和L2的抑制活性,我们表明L2无法在经历了营养生长向生殖生长转变的本氏烟草植株中抑制沉默。由于先前已证明L2在成熟的拟南芥植株中有效,这些结果表明沉默机制在发育过程中或对胁迫的反应中可能会以物种特异性的方式发生变化。已知AL2和L2蛋白共享一种与两种蛋白抑制ADK的能力相关的抑制机制,而AL2还可以通过转录激活细胞基因来抑制沉默。在这里,我们还提供了证据证明存在第三种AL2抑制机制,该机制既不依赖于转录激活也不依赖于ADK失活。除了揭示AL2的显著多功能性外,这项工作还突出了病毒抑制因子作为分析沉默途径探针的实用性。

相似文献

1
Analysis of geminivirus AL2 and L2 proteins reveals a novel AL2 silencing suppressor activity.
J Virol. 2015 Mar;89(6):3176-87. doi: 10.1128/JVI.02625-14. Epub 2014 Dec 31.
2
Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins.
Plant Cell. 2003 Dec;15(12):3020-32. doi: 10.1105/tpc.015180. Epub 2003 Nov 13.
4
Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins.
J Virol. 2005 Jun;79(12):7410-8. doi: 10.1128/JVI.79.12.7410-7418.2005.
5
Functional modulation of the geminivirus AL2 transcription factor and silencing suppressor by self-interaction.
J Virol. 2007 Nov;81(21):11972-81. doi: 10.1128/JVI.00617-07. Epub 2007 Aug 22.
8
SnRK1 phosphorylation of AL2 delays Cabbage leaf curl virus infection in Arabidopsis.
J Virol. 2014 Sep;88(18):10598-612. doi: 10.1128/JVI.00761-14. Epub 2014 Jul 2.

引用本文的文献

1
Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense.
Int J Mol Sci. 2023 May 20;24(10):9049. doi: 10.3390/ijms24109049.
2
Geminiviral Triggers and Suppressors of Plant Antiviral Immunity.
Microorganisms. 2021 Apr 8;9(4):775. doi: 10.3390/microorganisms9040775.
3
Targets and Mechanisms of Geminivirus Silencing Suppressor Protein AC2.
Front Microbiol. 2021 Apr 9;12:645419. doi: 10.3389/fmicb.2021.645419. eCollection 2021.
5
DNA Geminivirus Infection Induces an Imprinted E3 Ligase Gene to Epigenetically Activate Viral Gene Transcription.
Plant Cell. 2020 Oct;32(10):3256-3272. doi: 10.1105/tpc.20.00249. Epub 2020 Aug 7.
6
Manipulation of the Plant Host by the Geminivirus AC2/C2 Protein, a Central Player in the Infection Cycle.
Front Plant Sci. 2020 May 19;11:591. doi: 10.3389/fpls.2020.00591. eCollection 2020.
7
Geminivirus-Encoded Proteins: Not All Positional Homologs Are Made Equal.
Front Microbiol. 2020 May 5;11:878. doi: 10.3389/fmicb.2020.00878. eCollection 2020.
9
Epigenetics in the plant-virus interaction.
Plant Cell Rep. 2019 Sep;38(9):1031-1038. doi: 10.1007/s00299-019-02414-0. Epub 2019 May 7.
10
Small RNA-Omics for Plant Virus Identification, Virome Reconstruction, and Antiviral Defense Characterization.
Front Microbiol. 2018 Nov 20;9:2779. doi: 10.3389/fmicb.2018.02779. eCollection 2018.

本文引用的文献

2
RNA-directed DNA methylation: an epigenetic pathway of increasing complexity.
Nat Rev Genet. 2014 Jun;15(6):394-408. doi: 10.1038/nrg3683. Epub 2014 May 8.
4
Geminiviruses: masters at redirecting and reprogramming plant processes.
Nat Rev Microbiol. 2013 Nov;11(11):777-88. doi: 10.1038/nrmicro3117. Epub 2013 Oct 8.
5
Virus-derived siRNAs and piRNAs in immunity and pathogenesis.
Curr Opin Virol. 2011 Dec;1(6):533-44. doi: 10.1016/j.coviro.2011.10.028.
7
Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications.
Curr Opin Plant Biol. 2011 Oct;14(5):580-7. doi: 10.1016/j.pbi.2011.07.011. Epub 2011 Aug 19.
8
Viral suppressors of RNA silencing.
Trends Plant Sci. 2011 May;16(5):265-72. doi: 10.1016/j.tplants.2011.02.010. Epub 2011 Mar 24.
9
BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis.
Plant Cell. 2011 Jan;23(1):273-88. doi: 10.1105/tpc.110.081695. Epub 2011 Jan 18.
10
Viral suppressors of RNA-based viral immunity: host targets.
Cell Host Microbe. 2010 Jul 22;8(1):12-5. doi: 10.1016/j.chom.2010.06.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验