Suppr超能文献

亮氨酸1在铁代谢中起作用,是新生隐球菌毒力所必需的。

Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans.

作者信息

Do Eunsoo, Hu Guanggan, Caza Mélissa, Oliveira Debora, Kronstad James W, Jung Won Hee

机构信息

Department of Systems Biotechnology, Chung-Ang University, Anseong 456-756, Republic of Korea.

The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

Fungal Genet Biol. 2015 Feb;75:11-9. doi: 10.1016/j.fgb.2014.12.006. Epub 2014 Dec 29.

Abstract

Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up-regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans.

摘要

在哺乳动物中不存在的氨基酸生物合成途径被认为是抗真菌治疗的一个有吸引力的靶点。亮氨酸生物合成就是这样一个靶点途径,它由一个从缬氨酸前体2-酮异戊酸开始的五步转化过程组成。异丙基苹果酸脱氢酶(Leu1)是一种铁硫簇蛋白,在模式真菌酿酒酵母的亮氨酸生物合成中是必需的。人类致病真菌新生隐球菌拥有酿酒酵母Leu1的直系同源物,我们之前的转录组数据表明LEU1的表达受铁可用性的调节。在这项研究中,我们表征了Leu1在铁稳态和新生隐球菌毒力中的作用。我们发现缺失LEU1会导致亮氨酸营养缺陷,并且Leu1可能在线粒体-细胞质铁硫簇平衡中发挥作用。虽然细胞质铁硫蛋白水平不受影响,但在leu1突变体中线粒体铁硫蛋白上调,这表明Leu1主要影响线粒体铁代谢。leu1突变体对氧化应激和细胞壁/膜破坏剂也表现出增加的敏感性,这可能是由线粒体功能障碍引起的。此外,leu1突变体在荚膜形成方面存在缺陷,并且在隐球菌病的小鼠吸入模型中显示出毒力减弱。总体而言,我们的结果表明Leu1在铁代谢中发挥作用,并且是新生隐球菌毒力所必需的。

相似文献

1
Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans.
Fungal Genet Biol. 2015 Feb;75:11-9. doi: 10.1016/j.fgb.2014.12.006. Epub 2014 Dec 29.
3
The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans.
Biochem Biophys Res Commun. 2016 Sep 2;477(4):706-711. doi: 10.1016/j.bbrc.2016.06.123. Epub 2016 Jun 25.
5
Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in .
J Microbiol Biotechnol. 2020 Aug 28;30(8):1142-1148. doi: 10.4014/jmb.2004.04041.
7
The interplay between electron transport chain function and iron regulatory factors influences melanin formation in .
mSphere. 2024 May 29;9(5):e0025024. doi: 10.1128/msphere.00250-24. Epub 2024 Apr 30.
8
Iron-Sulfur Protein Biogenesis Machinery Is a Novel Layer of Protection against Cu Stress.
mBio. 2017 Oct 31;8(5):e01742-17. doi: 10.1128/mBio.01742-17.

引用本文的文献

1
Acidic pH Reduces Fluconazole Susceptibility in by Altering Iron Uptake and Enhancing Ergosterol Biosynthesis.
J Microbiol Biotechnol. 2025 May 27;35:e2504007. doi: 10.4014/jmb.2504.04007.
3
The Response of to the Interaction with Human Neutrophils.
J Fungi (Basel). 2023 Nov 7;9(11):1088. doi: 10.3390/jof9111088.
4
FgLEU1 Is Involved in Leucine Biosynthesis, Sexual Reproduction, and Full Virulence in .
J Fungi (Basel). 2022 Oct 17;8(10):1090. doi: 10.3390/jof8101090.
6
Duplication and Functional Divergence of Branched-Chain Amino Acid Biosynthesis Genes in Aspergillus nidulans.
mBio. 2021 Jun 29;12(3):e0076821. doi: 10.1128/mBio.00768-21. Epub 2021 Jun 22.
7
Molecular targets for antifungals in amino acid and protein biosynthetic pathways.
Amino Acids. 2021 Jul;53(7):961-991. doi: 10.1007/s00726-021-03007-6. Epub 2021 Jun 3.
9
A Transcriptional Regulatory Map of Iron Homeostasis Reveals a New Control Circuit for Capsule Formation in .
Genetics. 2020 Aug;215(4):1171-1189. doi: 10.1534/genetics.120.303270. Epub 2020 Jun 24.
10
Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in .
J Microbiol Biotechnol. 2020 Aug 28;30(8):1142-1148. doi: 10.4014/jmb.2004.04041.

本文引用的文献

1
A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans.
PLoS One. 2014 Feb 20;9(2):e89122. doi: 10.1371/journal.pone.0089122. eCollection 2014.
3
The Aspergillus fumigatus dihydroxyacid dehydratase Ilv3A/IlvC is required for full virulence.
PLoS One. 2012;7(9):e43559. doi: 10.1371/journal.pone.0043559. Epub 2012 Sep 18.
4
A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs.
Fungal Genet Biol. 2012 Nov;49(11):955-66. doi: 10.1016/j.fgb.2012.08.006. Epub 2012 Sep 4.
6
Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy.
Eukaryot Cell. 2011 Nov;10(11):1376-83. doi: 10.1128/EC.05184-11. Epub 2011 Sep 16.
7
Leucine biosynthesis regulates cytoplasmic iron-sulfur enzyme biogenesis in an Atm1p-independent manner.
J Biol Chem. 2011 Nov 25;286(47):40878-88. doi: 10.1074/jbc.M111.270082. Epub 2011 Sep 16.
8
Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans.
Genetics. 2011 Jun;188(2):309-23. doi: 10.1534/genetics.111.128538. Epub 2011 Mar 24.
9
Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box.
Nat Rev Microbiol. 2011 Mar;9(3):193-203. doi: 10.1038/nrmicro2522.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验