Suppr超能文献

抗菌肽分类、预测及设计的改进方法

Improved methods for classification, prediction, and design of antimicrobial peptides.

作者信息

Wang Guangshun

机构信息

Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE, 68198-6495, USA,

出版信息

Methods Mol Biol. 2015;1268:43-66. doi: 10.1007/978-1-4939-2285-7_3.

Abstract

Peptides with diverse amino acid sequences, structures, and functions are essential players in biological systems. The construction of well-annotated databases not only facilitates effective information management, search, and mining but also lays the foundation for developing and testing new peptide algorithms and machines. The antimicrobial peptide database (APD) is an original construction in terms of both database design and peptide entries. The host defense antimicrobial peptides (AMPs) registered in the APD cover the five kingdoms (bacteria, protists, fungi, plants, and animals) or three domains of life (bacteria, archaea, and eukaryota). This comprehensive database ( http://aps.unmc.edu/AP ) provides useful information on peptide discovery timeline, nomenclature, classification, glossary, calculation tools, and statistics. The APD enables effective search, prediction, and design of peptides with antibacterial, antiviral, antifungal, antiparasitic, insecticidal, spermicidal, anticancer activities, chemotactic, immune modulation, or antioxidative properties. A universal classification scheme is proposed herein to unify innate immunity peptides from a variety of biological sources. As an improvement, the upgraded APD makes predictions based on the database-defined parameter space and provides a list of the sequences most similar to natural AMPs. In addition, the powerful pipeline design of the database search engine laid a solid basis for designing novel antimicrobials to combat resistant superbugs, viruses, fungi, or parasites. This comprehensive AMP database is a useful tool for both research and education.

摘要

具有多样氨基酸序列、结构和功能的肽是生物系统中的重要参与者。构建注释完善的数据库不仅有助于进行有效的信息管理、搜索和挖掘,还为开发和测试新的肽算法及机器奠定基础。抗菌肽数据库(APD)在数据库设计和肽条目方面都是原创性构建。APD中登记的宿主防御抗菌肽(AMPs)涵盖了五个界(细菌、原生生物、真菌、植物和动物)或生命的三个域(细菌、古菌和真核生物)。这个综合数据库(http://aps.unmc.edu/AP)提供了有关肽发现时间线、命名法、分类、术语表、计算工具和统计数据的有用信息。APD能够有效地搜索、预测和设计具有抗菌、抗病毒、抗真菌、抗寄生虫、杀虫、杀精、抗癌活性、趋化、免疫调节或抗氧化特性的肽。本文提出了一种通用分类方案,以统一来自各种生物来源的先天免疫肽。作为一项改进,升级后的APD基于数据库定义的参数空间进行预测,并提供与天然AMPs最相似的序列列表。此外,数据库搜索引擎强大的管道设计为设计新型抗菌剂以对抗耐药超级细菌、病毒、真菌或寄生虫奠定了坚实基础。这个综合的AMPs数据库对于研究和教育都是一个有用的工具。

相似文献

1
Improved methods for classification, prediction, and design of antimicrobial peptides.
Methods Mol Biol. 2015;1268:43-66. doi: 10.1007/978-1-4939-2285-7_3.
2
APD3: the antimicrobial peptide database as a tool for research and education.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93. doi: 10.1093/nar/gkv1278. Epub 2015 Nov 23.
3
APD: the Antimicrobial Peptide Database.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D590-2. doi: 10.1093/nar/gkh025.
4
Unifying the classification of antimicrobial peptides in the antimicrobial peptide database.
Methods Enzymol. 2022;663:1-18. doi: 10.1016/bs.mie.2021.09.006. Epub 2021 Oct 12.
6
Machine Learning Prediction of Antimicrobial Peptides.
Methods Mol Biol. 2022;2405:1-37. doi: 10.1007/978-1-0716-1855-4_1.
7
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs.
Pharmaceuticals (Basel). 2013 May 27;6(6):728-58. doi: 10.3390/ph6060728.
8
LAMP: A Database Linking Antimicrobial Peptides.
PLoS One. 2013 Jun 18;8(6):e66557. doi: 10.1371/journal.pone.0066557. Print 2013.
9
Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database.
Antimicrob Agents Chemother. 2010 Mar;54(3):1343-6. doi: 10.1128/AAC.01448-09. Epub 2010 Jan 19.
10
APD2: the updated antimicrobial peptide database and its application in peptide design.
Nucleic Acids Res. 2009 Jan;37(Database issue):D933-7. doi: 10.1093/nar/gkn823. Epub 2008 Oct 28.

引用本文的文献

1
Antimicrobial Peptides: Mechanisms, Applications, and Therapeutic Potential.
Infect Drug Resist. 2025 Aug 27;18:4385-4426. doi: 10.2147/IDR.S514825. eCollection 2025.
3
Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides.
Small Sci. 2025 Mar 6;5(6):2400579. doi: 10.1002/smsc.202400579. eCollection 2025 Jun.
6
AbAMPdb: a database of Acinetobacter baumannii specific antimicrobial peptides.
Database (Oxford). 2024 Oct 12;2024. doi: 10.1093/database/baae096.
7
Study of the Antimicrobial Activity of the Human Peptide SQQ30 against Pathogenic Bacteria.
Antibiotics (Basel). 2024 Feb 1;13(2):145. doi: 10.3390/antibiotics13020145.
9
Site Mutation Improves the Expression and Antimicrobial Properties of Fungal Defense.
Antibiotics (Basel). 2023 Aug 3;12(8):1283. doi: 10.3390/antibiotics12081283.
10
Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies.
Toxins (Basel). 2023 May 24;15(6):356. doi: 10.3390/toxins15060356.

本文引用的文献

1
Post-translational Modifications of Natural Antimicrobial Peptides and Strategies for Peptide Engineering.
Curr Biotechnol. 2012 Feb;1(1):72-79. doi: 10.2174/2211550111201010072.
2
Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs.
Pharmaceuticals (Basel). 2013 May 27;6(6):728-58. doi: 10.3390/ph6060728.
3
Bactofencin A, a new type of cationic bacteriocin with unusual immunity.
mBio. 2013 Oct 29;4(6):e00498-13. doi: 10.1128/mBio.00498-13.
4
LAMP: A Database Linking Antimicrobial Peptides.
PLoS One. 2013 Jun 18;8(6):e66557. doi: 10.1371/journal.pone.0066557. Print 2013.
5
iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types.
Anal Biochem. 2013 May 15;436(2):168-77. doi: 10.1016/j.ab.2013.01.019. Epub 2013 Feb 6.
6
The RCSB Protein Data Bank: new resources for research and education.
Nucleic Acids Res. 2013 Jan;41(Database issue):D475-82. doi: 10.1093/nar/gks1200. Epub 2012 Nov 27.
7
The Importance of Amino Acid Composition in Natural AMPs: An Evolutional, Structural, and Functional Perspective.
Front Immunol. 2012 Jul 31;3:221. doi: 10.3389/fimmu.2012.00221. eCollection 2012.
8
ThioFinder: a web-based tool for the identification of thiopeptide gene clusters in DNA sequences.
PLoS One. 2012;7(9):e45878. doi: 10.1371/journal.pone.0045878. Epub 2012 Sep 24.
9
Ab initio design of potent anti-MRSA peptides based on database filtering technology.
J Am Chem Soc. 2012 Aug 1;134(30):12426-9. doi: 10.1021/ja305644e. Epub 2012 Jul 19.
10
EnzyBase: a novel database for enzybiotic studies.
BMC Microbiol. 2012 Apr 11;12:54. doi: 10.1186/1471-2180-12-54.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验